Corrigendum to "Multiple connecting geodesics of a Randers-Kropina metric via homotopy theory for solutions of an affine control system" (Topol. Methods Nonlinear Anal. 61 (2023), no.1, 527-547)
DOI:
https://doi.org/10.12775/TMNA.2024.048Keywords
Randers metric, Kropina metric, geodesics, differential inclusion, causal Killing field, Zermelo's navigation problemAbstract
We correct a mistake in our paper ``Multiple connecting geodesics of a Randers-Kropina metric via homotopy theory for solutions of an affine control system'', Topol. Methods Nonlinear Anal. {\bf 61} (2023), 527-547. % \href{https://doi.org/10.12775/TMNA.2022.066} {DOI: 10.12775/TMNA.2022.066}.References
A. Agrachev, D. Barilari and U. Boscain, A Comprehensive Introduction to SubRiemannian Geometry, Cambridge University Press, Cambridge, 2020.
F. Boarotto and A. Lerario, Homotopy properties of horizontal path spaces and a theorem of Serre in subriemannian geometry, Comm. Anal. Geom. 25 (2017), 269–301.
E. Caponio, M. A. Javaloyes and A. Masiello, Multiple connecting geodesics of a Randers–Kropina metric via homotopy theory for solutions of an affine control system, Topol. Methods Nonlinear Anal. 61 (2023), 527–547.
E. Caponio, A. Masiello and S. Suhr, On homotopy properties of solutions of some differential inclusions in the W 1,p -topology, ESAIM Control Optim. Calc. Var. 31 (2025), article no. 13, 15 pp. DOI: 10.1051/cocv/2024094.
J. Dominy and H. Rabitz, Dynamic homotopy and landscape dynamical set topology in quantum control, J. Math. Phys. 53 (2012), 082201, 17.
E. Fadell and S. Husseini, Category of loop spaces of open subsets in Euclidean space, Nonlinear Anal. 17 (1991), 1153–1161.
V. Jurdjevic, Geometric Control Theory, Cambridge University Press, Cambridge, 1997.
Published
How to Cite
Issue
Section
Stats
Number of views and downloads: 0
Number of citations: 0