Skip to main content Skip to main navigation menu Skip to site footer
  • Login
  • Language
    • English
    • Język Polski
  • Menu
  • Home
  • Current
  • Online First
  • Archives
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  • Login
  • Language:
  • English
  • Język Polski

Topological Methods in Nonlinear Analysis

A fixed point index approach to a third order nonlocal boundary value problem
  • Home
  • /
  • A fixed point index approach to a third order nonlocal boundary value problem
  1. Home /
  2. Archives /
  3. Vol 65, No 2 (June 2025) /
  4. Articles

A fixed point index approach to a third order nonlocal boundary value problem

Authors

  • Mirosława Zima https://orcid.org/0000-0002-6152-4962
  • Gabriela Szajnowska https://orcid.org/0000-0002-5257-9435

DOI:

https://doi.org/10.12775/TMNA.2024.046

Keywords

Boundary value problem, nonlocal boundary conditions, positive solution, cone

Abstract

Using a topological approach we study the existence of positive solutions to a third order differential equation subject to nonlocal boundary conditions. Our method is based on the fixed point index theory in cones. The main results extend and complement some previous works and are illustrated by suitable examples.

References

H. Amann, Fixed Point Equations and Nonlinear Eigenvalue Problems in Ordered Banach Spaces, SIAM Review 18 (1976), 620–709.

A. Benmezaı̈ and E.-D. Sedkaoui, Positive solution for singular third-order BVPs on the half line with first-order derivative dependence, Acta Univ. Sapientiae 13 (2021), 105–126.

A. Cabada, L. López-Somoza and F. Minhós, Existence, non-existence and multiplicity results for a third order eigenvalue three-point boundary value problem, J. Nonlinear Sci. Appl. 10 (2017), 5445–5463.

F. Cianciaruso, G. Infante and P. Pietramala, Solutions of perturbed Hammerstein integral equations with applications, Nonlinear Anal. Real World Appl. 33 (2017), 317–347.

L. Danziger and G.L. Elmergreen, The thyroid-pituitary homeostatic mechanism, Bull. Math. Biophys. 18 (1956), 1–13.

C.S. Goodrich, Coercive functionals and their relationship to multiplicity of solution to nonlocal boundary value problems, Topol. Methods Nonlinear Anal. 54 (2019), 409–426.

C.S. Goodrich, On a nonlocal BVP with nonlinear boundary conditions, Results Math. 63 (2013), 1351–1364.

C.S. Goodrich, New Harnack inequalities and existence theorems for radially symmetric solutions of elliptic PDEs with sign changing or vanishing Green’s function, J. Differential Equations 264 (2018), 236–262.

J. Graef, L. Kong and F. Minhós, Generalized Hammerstein equations and applications, Results Math. 72 (2017), 369–383.

J. Graef and J.R.L. Webb, Third order boundary value problems with nonlocal boundary conditions, Nonlinear Anal. 71 (2009), 1542–1551.

M. Greguš, Third Order Linear Differential Equations, Mathematics and its Applications, D. Reidel Publishing Co., Dordrecht, 1987.

D. Guo and V. Lakshmikantham, Nonlinear Problems in Abstract Cones, Academic Press, Boston, 1988.

Ch.P. Gupta, On a third-order three-point boundary value problem at resonance, Differential Integral Equations 2 (1989), 1–12.

B. Hopkins and N. Kosmatov, Third-order boundary value problems with sign-changing solutions, Nonlinear Anal. 67 (2007), 126–137.

G. Infante, Positive and increasing solutions of perturbed Hammerstein integral equations with derivative dependence, Discrete Contin. Dyn. Syst. B 25 (2020), 691–699.

G. Infante and F. Minhós, Nontrivial solutions of systems of Hammerstein integral equations with first derivative dependence, Mediterr. J. Math. 14 (2017), 242,

W. Jiang and N. Kosmatov, Solvability of a third-order differential equation with functional boundary conditions at resonance, Boundary Value Problems 2017 (2017), 81.

J. Jones, W.C. Troy and A.D. MacGillivary, Steady solutions of the Kuramoto–Sivashinsky equation for small wave speed, J. Differential Equations 96 (1992), 28–55.

K.Q. Lan, Multiple positive solutions of semilinear equations with singularities, J. Lond. Math. Soc. 63 (2001), 690–704.

L. López-Somoza and F. Minhós, Existence and multiplicity results for some generalized Hammerstein equations with a parameter, Adv. Differ. Equ.2019 (2019), 423.

F. Minhós and R. de Sousa, On coupled systems of Hammerstein integral equations, Bound. Value Probl. 2019 (2019), 7.

F. Minhós and R. de Sousa, On the solvability of third-order three point systems of differential equations with dependence on the first derivative, Bull. Braz. Math. Soc. 48 (2017), 485–503.

S. Padhi and S. Pati, Theory of Third-Order Differential Equations, Springer, New Delhi, 2014.

S. Smirnov, Existence of sign-changing solutions for a third-order boundary value problem with nonlocal conditions of integral type, Topol. Methods Nonlinear Anal. 62 (2023), 377–384.

J.-P. Sun and H.-B. Li, Monotone positive solution of nonlinear third-order BVP with integral boundary conditions, Bound. Value Probl., vol. 2010, Article ID 874959, 12 pp.

G. Szajnowska and M. Zima, Positive solutions to a third order nonlocal boundary value problem with a parameter, Opuscula Math. 44 (2024), 267–283.

J.R.L. Webb, Non-local second-order boundary value problems with derivative-dependent nonlinearity, Philos. Trans. Roy. Soc. A 379, 20190383.

J.R.L. Webb and G. Infante, Positive solutions of nonlocal boundary value problems: a unified approach, J. London Math. Soc. (2) 74 (2006), 673–693.

H.-E. Zhang, Multiple positive solutions of nonlinear BVPs for differential systems involving integral conditions, Bound. Value Probl. 2014 (2014), 61.

L. Zhao, W. Wang and C. Zhai, Existence and uniqueness of monotone positive solutions for a third-order three-point boundary value problem, Differ. Equ. Appl. 10 (2018), 251–260.

Downloads

  • PREVIEW
  • FULL TEXT

Published

2025-06-14

How to Cite

1.
ZIMA, Mirosława and SZAJNOWSKA, Gabriela. A fixed point index approach to a third order nonlocal boundary value problem. Topological Methods in Nonlinear Analysis. Online. 14 June 2025. Vol. 65, no. 2, pp. 673 - 686. [Accessed 30 December 2025]. DOI 10.12775/TMNA.2024.046.
  • ISO 690
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

Vol 65, No 2 (June 2025)

Section

Articles

License

Copyright (c) 2025 Mirosława Zima, Gabriela Szajnowska

Creative Commons License

This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.

Stats

Number of views and downloads: 0
Number of citations: 0

Search

Search

Browse

  • Browse Author Index
  • Issue archive

User

User

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo

Newsletter

Subscribe Unsubscribe
Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop