Skip to main content Skip to main navigation menu Skip to site footer
  • Login
  • Language
    • English
    • Język Polski
  • Menu
  • Home
  • Current
  • Online First
  • Archives
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  • Login
  • Language:
  • English
  • Język Polski

Topological Methods in Nonlinear Analysis

Multiple nodal solutions for a critical nonlinear Choquard equation
  • Home
  • /
  • Multiple nodal solutions for a critical nonlinear Choquard equation
  1. Home /
  2. Archives /
  3. Vol 65, No 2 (June 2025) /
  4. Articles

Multiple nodal solutions for a critical nonlinear Choquard equation

Authors

  • Eudes Mendes Barboza https://orcid.org/0000-0002-5608-3760
  • Olímpio H. Miyagaki https://orcid.org/0009-0002-6847-3472
  • Claudia R. Santana

DOI:

https://doi.org/10.12775/TMNA.2024.044

Keywords

Choquard equation, critical Hardy-Littlewood-Sobolev Growth, nodal solutions, variational problems, critical points

Abstract

In this paper, our goal is to investigate the existence of multiple nodal solutions to the following class of problems \begin{equation*} \begin{cases} -\Delta u+ V(x) u = \big(I_{\alpha}\ast |u|^{2_{\alpha}^* }\big) |u|^{2_{\alpha}^* -2}u +\lambda g(u) & \text{in } \mathbb{R}^N,\\ u \in H^1(\mathbb{R}^N), \end{cases} \end{equation*} where $I_{\alpha}$ represents the Riesz potential, $V$ is a continuous potential, $N\geq 3$, $0< \alpha< N$, $\lambda> 0$, $2^*_{\alpha}= ({N+\alpha})/({N-2})$ is the critical exponent in the sense of the Hardy-Littlewood-Sobolev inequality and $g$ is a local or nonlocal superlinear perturbation with subcritical growth in the sense of Sobolev or Hardy-Littlewood-Sobolev, respectively. For this matter, combining variational methods with the technique introduced in \cite{primeiro}, which was adapted for Choquard equations in \cite{GuiGuo}, \cite{nodal}, we show that for any positive $k\in \mathbb{N}$ the previous problem with a nonlinearity involving critical growth has at least a radially symmetrical ground state solution changing sign exactly $k$-times.

References

A. Ambrosetti, H. Brézis and G. Cerami, Combined effects of concave and convex nonlinearities in some elliptic problems, J. Funct. Anal. 122 (1994), 519–543.

T. Bartsch and M. Willem, Infinitely many radial solutions of a semilinear elliptic problem on RN , Arch. Ration. Mech. Anal. 124 (1993), 261–276.

H. Brézis and E. Lieb, A relation between pointwise convergence of functions and convergence of functionals, Proc. Amer. Math. Soc. 88 (1983), 486–490.

H. Brézis and L. Nirenberg, Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents, Comm. Pure Appl. Math. 36 (1983), 437–477.

A. Capozzi, D. Fortunato and G. Palmieri, An existence result for nonlinear elliptic problems involving critical Sobolev exponent, Ann. Inst. H. Poincaré, Ann. Non Lineaire 2 (1985), 463–470.

P. Choquard and J. Stubbe, The one-dimensional Schrödinger–Newton equations, Lett. Math. Phys. 81 (2007) 177–184.

P. Choquard, J. Stubbe and M. Vuffray, Stationary solutions of the Schrödinger–Newton model – an ODE approach, Differential Integral Equations 21 (2008), 665–679.

F. Gao and M. Yang, On nonlocal Choquard equations with Hardy-Littlewood–Sobolev critical exponents, J. Math Anal. Appl. 448 (2017), 1006–1041.

F. Gao and M. Yang, The Brézis–Nirenberg type critical problem for the nonlinear Choquard equation, Sci. China Math. 61 (2018), 1219–1242.

F. Gao and M. Yang, A strongly indefinite Choquard equation with critical exponent due to the Hardy-Littlewood-Sobolev inequality. Comm. Cont. Math. 20 (2018).

C. Gui and H. Guo, On nodal solutions of the nonlinear Choquard equation, Adv. Nonlinear Stud. 4 (2019), 677–691.

R. He, Infinitely many solutions for The Brézis–Nirenberg problem with nonlinear Choquard equations, J. Math. Anal. Appl. 515 (2022), pp. 24.

Z. Huang, J. Yang and W. Yu, Multiple nodal solutions of nonlinear Choquard equations, Electron. J. Differential Equations 2017 (2017), paper no. 268.

E. Lieb, Existence and uniqueness of the minimizing solution of Choquard nonlinear equation, Stud. Appl. Math. 57 (1976/1977), 93–105.

E.H. Lieb and M. Loss, Analysis, 2nd ed., Grad. Stud. Math., vol. 14, American Mathematical Society, Providence, 2001.

P.L. Lions, The Choquard equation and related questions, Nonlinear Anal. 4 (1980), no. 6, 1063–1072.

V. Moroz and J. Van Schaftingen, Groundstates of nonlinear Choquard equations: Existence, qualitative properties and decay asymptotics. J. Func. Anal. 265 (2013), 153–184.

S. Pekar, Untersuchungüber Die Elektronentheorie Der Kristalle, Akademie Verlag, Berlin, 1954.

R. Penrose, On gravity role in quantum state reduction, Gen. Relativ. Gravitat. 28 (1996), 581–600.

A. Pistoia and N. Soave, On Coron’s problem for weakly coupled elliptic systems Proc. Lond. Math. Soc. (3) 116 (2018), no. 1, 33–67.

X. Zhang, Y. Meng and X. He, Analysis of a low linear perturbed Choquard equation with critical growth, J. Fixed Point Theory Appl. 3 (2023).

Downloads

  • PREVIEW
  • FULL TEXT

Published

2025-06-14

How to Cite

1.
BARBOZA, Eudes Mendes, MIYAGAKI, Olímpio H. and SANTANA, Claudia R. Multiple nodal solutions for a critical nonlinear Choquard equation. Topological Methods in Nonlinear Analysis. Online. 14 June 2025. Vol. 65, no. 2, pp. 589 - 622. [Accessed 15 December 2025]. DOI 10.12775/TMNA.2024.044.
  • ISO 690
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

Vol 65, No 2 (June 2025)

Section

Articles

License

Copyright (c) 2025 Eudes Mendes Barboza, Olímpio H. Miyagaki, Claudia R. Santana

Creative Commons License

This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.

Stats

Number of views and downloads: 0
Number of citations: 0

Search

Search

Browse

  • Browse Author Index
  • Issue archive

User

User

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo

Newsletter

Subscribe Unsubscribe
Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop