Skip to main content Skip to main navigation menu Skip to site footer
  • Login
  • Language
    • English
    • Język Polski
  • Menu
  • Home
  • Current
  • Online First
  • Archives
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  • Login
  • Language:
  • English
  • Język Polski

Topological Methods in Nonlinear Analysis

Two novel golden ratio algorithms for quasimonotone variational inequalities
  • Home
  • /
  • Two novel golden ratio algorithms for quasimonotone variational inequalities
  1. Home /
  2. Archives /
  3. Vol 65, No 1 (March 2025) /
  4. Articles

Two novel golden ratio algorithms for quasimonotone variational inequalities

Authors

  • Haiying Li https://orcid.org/0009-0001-5860-2982
  • Xingfang Wang https://orcid.org/0009-0001-4682-959X

DOI:

https://doi.org/10.12775/TMNA.2024.037

Keywords

Variational inequality, golden ratio, inertial technique, quasimonotone, Hilbert space

Abstract

In this article, we provide two viscosity-type golden ratio algorithms with different inertial terms for solving quasimonotone variational inequalities in real Hilbert spaces. Both of our algorithms use a new adaptive step size which is based on the golden ratio $(\sqrt{5}+1)/2$. Under some suitable conditions, we obtain strong convergence theorems of our proposed algorithms. Moreover, several numerical results are given to illustrate the efficiency and advantages of our proposed methods.

References

T.O. Alakoya, O.T. Mewomo and Y. Shehu, Strong convergence results for quasimonotone variational inequalities, Math. Methods Oper. Res. 95 (2022), 249–279.

G. Cai, Q.L. Dong and Y. Peng, Strong convergence theorems for solving variational inequality problems with pseudo-monotone and non-Lipschitz operators, J. Optim. Theory Appl. 188 (2021), 447–472.

L.C. Ceng, N. Hadjisavvas and N.C. Wong, Strong convergence theorem by a hybrid extragradient-like approximation method for variational inequalities and fixed point problems, J. Global Optim. 46 (2010), 635–646.

Y. Censor, A. Gibali and S. Reich, Extensions of Korpelevich’s extragradient method for the variational inequality problem in Euclidean space, Optimization 61 (2012), 1119–1132.

Y. Censor, A. Gibali and S. Reich, Strong convergence of subgradient extragradient methods for the variational inequality problem in Hilbert space, Optim. Methods Softw. 26 (2011), 827–845.

Y. Censor, A. Gibali and S. Reich, The subgradient extragradient method for solving variational inequalities in Hilbert space, J. Optim. Theory Appl. 148 (2011), 318–335.

Q.L. Dong, Y.J. Cho, L.L. Zhong and T.M. Rassias, Inertial projection and contraction algorithms for variational inequalities, J. Global Optim. 70 (2018), 687–704.

Q.L. Dong, S.N. He and L.L. Liu, A general inertial projected gradient method for variational inequality problems, Comput. Appl. Math. 40 (2021), 168, 24 pp.

Q.L. Dong, Y.Y. Lu and J.F. Yang, The extragradient algorithm with inertial effects for solving the variational inequality, Optimization 65 (2016), 2217–2226.

F. Facchinei, J.S. Pang, Finite-dimensional variational inequalities and complementarity problems, Springer Series in Operations Research, vol. II. Springer–Verlag, New York, 2003, pp. i–xxxiv, 625–1234.

J.J. Fan and X.L. Qin, Weak and strong convergence of inertial Tseng’s extragradient algorithms for solving variational inequality problems, Optimization 70 (2021), 1195–1216.

A. Gibali, S. Reich and R. Zalas, Outer approximation methods for solving variational inequalities in Hilbert space, Optimization 66 (2017), 417–437.

K. Goebel and S. Reich, Uniform Convexity, Hyperbolic Geometry and Nonexpansive Mapping, Monographs and Textbooks in Pure and Applied Mathematics, vol. 83, Marcet Dekker, New York, 1984.

P.T. Harker and J. S. Pang, A Damped-Newton Method for the Linear Complementarity Problem, Computational Solution of Nonlinear Systems of Equations, AMS Lectures on Applied Mathematics, 1990.

D.V. Hieu, Y.J. Cho and Y.B. Xiao, Golden ratio algorithms with new stepsize rules for variational inequalities, Math. Methods Appl. Sci. 42 (2019), 6067–6082.

C. Izuchukwu, S. Reich and Y. Shehu, Relaxed inertial methods for solving the split monotone variational inclusion problem beyond co-coerciveness, Optimization 72 (2023), 607–646.

S. Jabeen, M.A. Noor and K.I. Noor, Inertial methods for solving system of quasi variational inequalities, J. Adv. Math. Stud. 15 (2022), 1–10.

E.N. Khobotov, Modification of the extragradient method for solving variational inequalities and certain optimization problems, USSR Comput. Math. Math. Phys. 27 (1989), 120–127.

E. Kopecká and S. Reich, A note on alternating projections in Hilbert space, J. Fixed Point Theory Appl. 12 (2012), 41–47.

G.M. Korpelevich, The extragradient method for finding saddle points and other problems, Ekon. Mate. Metody 12 (1976), 747–756.

O.J. Lateef, N. Pholasa, S. Pongsakorn and C. Prasit, Inertial-like Bregman projection method for solving systems of variational inequalities, Math. Meth. Appl. Sci. 46 (2023), 6876–16898.

H.Y. Li, F.H. Wang and H. Yu, On the inertial relaxed CQ algorithm in Hilbert spaces J. Nonlinear Var. Anal. 5 (2021), 549–559.

H.Y. Li and X.F. Wang, Subgradient extragradient method with double inertial steps for quasi-monotone variational inequalities, Filomat 37 (2023), 9823–9844.

H.Y. Li, Y.L. Wu and F.H. Wang, Convergence analysis for solving equilibrium problems and split feasibility problems in Hilbert spaces, Optimization 72 (2023), 1863–1898.

H.Y. Li, Y.L. Wu and F. H. Wang, Inertial algorithms of common solutions for variational inequality, fixed point and equilibrium problems, J. Nonlinear Convex Anal. 23 (2022), 859–877.

H.W. Liu and J. Yang, Weak convergence of iterative methods for solving quasimonotone variational inequalities, Comput. Optim. Appl. 77 (2020), 491–508.

X.J. Long, J. Yang and Y.J. Cho, Modified subgradient extragradient algorithms with a new line-search rule for variational inequalities, Bull. Malays. Math. Sci. Soc. 46 (2023), 30 pp.

Y.V. Malitsky and V.V. Semenov, A hybrid method without extrapolation step for solving variational inequality problems, J. Global Optim. 61 (2015), 193–202.

P. Marcotte, Applications of Khobotov’s algorithm to variational and network equlibrium problems, Inf. Syst. Oper. Res. 29 (1991), 258–270.

O.K. Oyewole and S. Reich, Two subgradient extragradient methods based on the golden ratio technique for solving variational inequality problems, Numer. Algorithms (to appear), DOI: 10.1007/s11075-023-01746-z.

H.U. Rehman, P. Kumam, W. Kumam and K. Sombut, A new class of inertial algorithms with monotonic step sizes for solving fixed point and variational inequalities, Math. Methods Appl. Sci. 45 (2022), 9061–9088.

S. Reich, T.M. Tuyen and N.S. Ha, Variational inequalities over the solutions sets of split variational inclusion problems, Appl. Numer. Math. 192 (2023), 319–336.

S. Saejung and P. Yotkaew, Approximation of zeros of inverse strongly monotone operators in Banach spaces, Nonlinear Anal. 75 (2012), 742–750.

Y. Shehu, O.S. Iyiola and S. Reich, A modified inertial subgradient extragradient method for solving variational inequalities, Optim. Eng. 23 (2022), 421–449.

B. Tan, X.L. Qin and X.F. Wang, Alternated inertial algorithms for split feasibility problems, Numer. Algorithms 95 (2024), 773–812.

B. Tan, X.L. Qin and J.C. Yao, Strong convergence of self-adaptive inertial algorithms for solving split variational inclusion problems with applications, J. Sci. Comput 87 (2021), 34 pp.

B. Tan, X.L. Qin and J.C. Yao, Strong convergence of inertial projection and contraction methods for pseudomonotone variational inequalities with applications to optimal control problems, J. Global Optim. 82 (2022), 523–557.

B. Tan, X.L. Qin and J.C. Yao, Extragradient algorithms for solving equilibrium problems on Hadamard mainfolds, Appl. Numer. Math. 201 (2024), 187–216.

D.V. Thong and V.T. Dung, A relaxed inertial factor of the modified subgradient extragradient method for solving pseudo monotone variational inequalities in Hilbert spaces, Acta Math. Sci. Ser. B (Engl. Ed.) 43 (2023), 184–204.

D.V. Thong and D.V. Hieu, Modified subgradient extragradient method for variational inequality problems, Numer. Algorithms 79 (2018), 597–610.

D.V. Thong and D.V. Hieu, Weak and strong convergence theorems for variational inequality problems, Numer. Algorithms 78 (2018), 1045–1060.

D.V. Thong, N.T. Vinh and Y.J. Cho, Accelerated subgradient extragradient methods for variational inequality problems, J. Sci. Comput. 80 (2019), 1438–1462.

P.T. Vuong and Y. Shehu, Convergence of an extragradient-type method for variational inequality with applications to optimal contral problems, Numer. Algorithms 81 (2019), 269–291.

Z.B. Xie, G. Cai, X.X. Li and Q.L. Dong, Strong convergence of the modified inertial extragradient method with line-search process for solving variational inequality problems in Hilbert spaces, J. Sci. Comput. 88 (2021).

Y.H. Yao, O.S. Iyiola and Y. Shehu, Subgradient extragradient method with double inertial steps for variational inequalities, J. Sci. Comput. 90 (2022), 29 pp.

Y.H. Yao, N. Shahzad and J.C. Yao, Convergence of Tseng-type self-adaptive algorithms for variational inequalities and fixed point problems, Carpathian J. Math. 37 (2021), 541–550.

J. Yang, H.W. Liu and Z.X. Liu, Modified subgradient extragradient algorithms for solving monotone variational inequalities, Optimization 67 (2018), 2247–2258.

M.L. Ye and Y.R. He, A double projection method for solving variational inequalities without monotonicity, Comput. Optim. Appl. 60 (2015), 141–150.

Downloads

  • PREVIEW
  • FULL TEXT

Published

2025-03-31

How to Cite

1.
LI, Haiying and WANG, Xingfang. Two novel golden ratio algorithms for quasimonotone variational inequalities. Topological Methods in Nonlinear Analysis. Online. 31 March 2025. Vol. 65, no. 1, pp. 145 - 175. [Accessed 6 July 2025]. DOI 10.12775/TMNA.2024.037.
  • ISO 690
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

Vol 65, No 1 (March 2025)

Section

Articles

License

Copyright (c) 2025 Haiying Li, Xingfang Wang

Creative Commons License

This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.

Stats

Number of views and downloads: 0
Number of citations: 0

Search

Search

Browse

  • Browse Author Index
  • Issue archive

User

User

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo

Newsletter

Subscribe Unsubscribe
Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop