Skip to main content Skip to main navigation menu Skip to site footer
  • Login
  • Language
    • English
    • Język Polski
  • Menu
  • Home
  • Current
  • Online First
  • Archives
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  • Login
  • Language:
  • English
  • Język Polski

Topological Methods in Nonlinear Analysis

LS-category and topological complexity of Milnor manifolds and corresponding generalized projective product spaces
  • Home
  • /
  • LS-category and topological complexity of Milnor manifolds and corresponding generalized projective product spaces
  1. Home /
  2. Archives /
  3. Vol 65, No 1 (March 2025) /
  4. Articles

LS-category and topological complexity of Milnor manifolds and corresponding generalized projective product spaces

Authors

  • Navnath Daundkar

DOI:

https://doi.org/10.12775/TMNA.2023.048

Keywords

LS-category, topological complexity, generalized projective product spaces, Milnor manifolds

Abstract

Milnor manifolds are a class of certain codimension-$1$ submanifolds of the product of projective spaces. In this paper, we study the LS-category and topological complexity of these manifolds. We determine the exact value of the LS-category and, in many cases, the topological complexity of these manifolds. We also obtain tight bounds on the topological complexity of these manifolds. It is known that Milnor manifolds admit $\mathbb{Z}_2$ and circle actions. We compute bounds on the equivariant LS-category and equivariant topological complexity of these manifolds. Finally, we describe the mod-$2$ cohomology rings of some generalized projective product spaces corresponding to Milnor manifolds and use this information to compute the bound on LS-category and topological complexity of these spaces.

References

V. Bukhshtaber and N. Raı̆, Toric manifolds and complex cobordisms, Uspekhi Mat. Nauk 53 (1998), 139–140.

D. Cohen and L. Vandembroucq, Topological complexity of the Klein bottle, J. Appl. Comput. Topol. 1 (2017), 199–213.

D. Cohen and L. Vandembroucq, On the topological complexity of manifolds with abelian fundamental group, Forum Math. 33 (2021), 1403–1421.

H. Colman and M. Grant, Equivariant topological complexity, Algebr. Geom. Topol. 12 (2013), 2299–2316.

O. Cornea, G. Lupton, J. Oprea and D. Tanré, Lusternik–Schnirelmann Category, American Mathematical Society, Providence, RI, 2003.

N. Daundkar and S. Sarkar, LS-category and Topological complexity of several families of fibre bundles, ArXiv Preprint, ArXiv: 2302.00468, (2023).

D. Davis, Projective product spaces, J. Topol. 3 (2010), 265–279.

P. Dey and M. Singh, Free actions of some compact groups on Milnor manifolds, Glasg. Math. J. 61 (2019), 727–742.

A. Dranishnikov and R. Sadykov, On the LS-category and topological complexity of a connected sum, Proc. Amer. Math. Soc. 147 (2019), 2235–2244.

M. Farber, Topological complexity of motion planning, Discrete Comput. Geom. 29 (2003), 211–221.

M. Farber, S. Tabachnikov and S. Yuzvinsky, Topological robotics: motion planning in projective spaces, Int. Math. Res. Not. 34 (2003), 1853–1870.

S. Fişekci and L. Vandembroucq, On the LS-category and topological complexity of projective product spaces, J. Homotopy Relat. Struct. 16 (2021), 769–780.

R. Fox, On the Lusternik–Schnirelmann category, Ann. of Math. (2) 42 (1941), 333–370.

T. Ganea, Some problems on numerical homotopy invariants, Symposium on Algebraic Topology (Battelle Seattle Res. Center, Seattle, Wash, 1971), 23–30.

I. James, On category, in the sense of Lusternik–Schnirelmann, Topology 17 (1978), 331–348.

W. Marzantowicz, A G-Lusternik–Schnirelman category of space with an action of a compact Lie group, Topology 28 (1989), 403–412.

J. Milnor, On the Stiefel–Whitney numbers of complex manifolds and of spin manifolds, Topology 3 (1965), 223-230.

H. Mukerjee, Classification of homotopy real Milnor manifolds, Topology Appl. 139 (2004), 151–184.

S. Sarkar and P. Zvengrowski, On generalized projective product spaces and Dold manifolds, Homology Homotopy Appl. 24 (2022), 265–289.

A.S. Švarc, The genus of a fiber space, Dokl. Akad. Nauk SSSR (N.S.) 119 (1958), 219–222.

Downloads

  • PREVIEW
  • FULL TEXT

Published

2025-03-08

How to Cite

1.
DAUNDKAR, Navnath. LS-category and topological complexity of Milnor manifolds and corresponding generalized projective product spaces. Topological Methods in Nonlinear Analysis. Online. 8 March 2025. Vol. 65, no. 1, pp. 13 - 33. [Accessed 28 June 2025]. DOI 10.12775/TMNA.2023.048.
  • ISO 690
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

Vol 65, No 1 (March 2025)

Section

Articles

License

Copyright (c) 2025 Navnath Daundkar

Creative Commons License

This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.

Stats

Number of views and downloads: 0
Number of citations: 0

Search

Search

Browse

  • Browse Author Index
  • Issue archive

User

User

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo

Newsletter

Subscribe Unsubscribe
Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop