Skip to main content Skip to main navigation menu Skip to site footer
  • Login
  • Language
    • English
    • Język Polski
  • Menu
  • Home
  • Current
  • Online First
  • Archives
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  • Login
  • Language:
  • English
  • Język Polski

Topological Methods in Nonlinear Analysis

Periodic solutions of singular Duffing equations under one-sided Lipschitz condition
  • Home
  • /
  • Periodic solutions of singular Duffing equations under one-sided Lipschitz condition
  1. Home /
  2. Archives /
  3. Vol 65, No 1 (March 2025) /
  4. Articles

Periodic solutions of singular Duffing equations under one-sided Lipschitz condition

Authors

  • Tiantian Ma
  • Congmin Yang
  • Zaihong Wang

DOI:

https://doi.org/10.12775/TMNA.2024.030

Keywords

Duffing equation, Poincaré-Birkhoff twist theorem, periodic solution

Abstract

In this paper, we study the existence and multiplicity of periodic solutions for singular Duffing equations $x''+g(x)=p(t)$. When $g$ satisfies one-sided Lipschitz condition and the related time map satisfies oscillation property, we prove that the given equation has infinitely many periodic solutions.

References

A. Capietto, J. Mawhin and F. Zanolin, A continuation theorem for periodic boundary value problems with oscillatory nonlinearities, Nonlinear Differ. Equ. Appl. 2 (1995), 133–163.

M. del Pino and R. Manásevich, Infinitely many T -periodic solutions for a problem arising in nonlinear elasticity, J. Differential Equations 103 (1993), 260–277.

M. del Pino, R. Manásevich and A. Montero, T -periodic solutions for some second order differential equations with singularities Proc. Roy. Soc. Edinburgh Sect. A 120 (1992), 231–243.

T. Ding and W. Ding, Resonance problem for a class of Duffing’s equations, Chin. Ann. Math. Ser. B 6 (1985), 427–432.

T. Ding, R. Iannacci and F. Zanolin, Existence and multiplicity results for periodic solutions of semilinear Duffing equations, J. Differential Equations 105 (1993), 364–409.

T. Ding and F. Zanolin, Periodic solutions of Duffing’s equations with superquadratic potential, J. Differential Equations 97 (1992), 328–378.

C. Fabry and A. Fonda, A systematic approach to non-resonance conditions for periodically forced planar Hamiltonian systems, Ann. Mat. Pura Appl. 201 (2022), 1033–1074.

P. Habets and L. Sanchez, Periodic solutions of some Liénard equations with singularities, Proc. Amer. Math. Soc. 109 (1990), 1035–1044.

D. Hao and S. Ma, Semilinear Duffing equations crossing resonance points, J. Differential Equations 133 (1997), 98–116.

M. Krasnosel’skiı̆ and P. Zabreı̆ko, Geometrical Methods of Nonlinear Analysis, Springer, Berlin, 1984.

A.C. Lazer and S. Solimini, On periodic solutions of nonlinear differential equations with singularities, Proc. Amer. Math. Soc. 88 (1987), 109–114.

D. Qian, Time maps and Duffing equations across resonant points, Sci. China A 23 (1993), 471–479.

C. Rebelo, A note on the Poincaré–Birkhoff fixed point theorem and periodic solutions of planar systems, Nonlinear Anal. 29 (1997), 291–311.

Z. Wang, Periodic solutions of the second order differential equations with singularities, Nonlinear Anal. 58 (2004), 319–331.

J. Xia and Z. Wang, Existence and multiplicity of periodic solutions for the Duffing equation with singularity, Proc. Roy. Soc. Edinburgh Sect. A 137 (2007), 625–645.

M. Zhang, Periodic solutions of Liénard equations with singular forces of repulsive type, J. Math. Anal. Appl. 203 (1996), 254–269.

M. Zhang, A relationship between the periodic and the Dirichlet BVPs of singular differential equations, Proc. Roy. Soc. Edinburgh Sect. A 128 (1998), 1099–1114.

Downloads

  • PREVIEW
  • FULL TEXT

Published

2025-02-14

How to Cite

1.
MA, Tiantian, YANG, Congmin and WANG, Zaihong. Periodic solutions of singular Duffing equations under one-sided Lipschitz condition. Topological Methods in Nonlinear Analysis. Online. 14 February 2025. Vol. 65, no. 1, pp. 301 - 320. [Accessed 6 July 2025]. DOI 10.12775/TMNA.2024.030.
  • ISO 690
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

Vol 65, No 1 (March 2025)

Section

Articles

License

Copyright (c) 2025 Tiantian Ma, Congmin Yang, Zaihong Wang

Creative Commons License

This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.

Stats

Number of views and downloads: 0
Number of citations: 0

Search

Search

Browse

  • Browse Author Index
  • Issue archive

User

User

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo

Newsletter

Subscribe Unsubscribe
Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop