Brézis-Kato type regularity results for higher order elliptic operators
DOI:
https://doi.org/10.12775/TMNA.2024.027Keywords
Brézis-Kato theorem, higher order elliptic operators, elliptic regularity, polyharmonic operatorsAbstract
We prove Brézis-Kato regularity type results for solutions of the higher order nonlinear elliptic equation \[ L u = g(x,u)\quad\text{in }\Omega \] with an elliptic operator $L$ of $2m$ order with variable coefficients and a Carathéodory function $g\colon \Omega\times \C\to\C$, where $\Omega\subset\R^N$ is an open set with $N > 2m$.References
S. Agmon, The Lp approach to the Dirichlet problem. I. Regularity theorems, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (3) 13 (1959), 405–448.
H. Berestycki and P.-L. Lions, Nonlinear scalar field equations. I. Existence of a ground state, Arch. Rational Mech. Anal. 82 (1983), no. 4, 313–345.
H. Brézis and T. Kato, Remarks on the Schrödinger operator with singular complex potentials, J. Math. Pures Appl. (9) 58 (1979), no. 2, 137–151.
F.E. Browder, On the spectral theory of strongly elliptic differential operators, Proc. Nat. Acad. Sci. USA 45 (1959), 1423–1431.
L. Escauriaza and S. Montaner, Some remarks on the Lp regularity of second derivatives of solutions to non-divergence elliptic equations and the Dini condition, Atti Accad. Naz. Lincei Rend. Lincei Mat. Appl. 28 (2017), no. 1, 49–63.
T. Jin, Y. Li and J. Xiong, On a fractional Nirenberg problem, part I: blow up analysis and compactness of solutions, J. Eur. Math. Soc. 16 (2014), no. 6, 1111–1171.
T. Kato, Perturbation Theory for Linear Operators, Classics in Mathematics, reprint of the 1980 edition, Springer–Verlag, Berlin, 1995, pp. xxii+619.
E. Leite, Fractional elliptic systems with nonlinearities of arbitrary growth, Electron. J. Differential Equations (2017), paper no. 206, 20.
J. Mederski and J. Siemianowski, Biharmonic nonlinear scalar field equations, arXiv:2107.07320.
V. Moroz and J. Van Schaftingen, Existence of groundstates for a class of nonlinear Choquard equations, Trans. Amer. Math. Soc. 367 (2015), no. 9, 6557–6579.
M. Struwe, Variational Methods, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], vol. 34, 4-th edition, Springer–Verlag, Berlin, 2008, pp. xx+302.
R.C.A.M. Van der Vorst, Best constant for the embedding of the space H 2 ∩ H01 (Ω) into L2N/(N −4) (Ω), Differential Integral Equations 6 (1993), no. 2, 259–276.
M. Willem, Minimax Theorems, Progress in Nonlinear Differential Equations and their Applications, vol. 24, Birkhäuser Boston, Inc., Boston, MA, 1996, pp. x+162.
Published
How to Cite
Issue
Section
Stats
Number of views and downloads: 0
Number of citations: 0