Skip to main content Skip to main navigation menu Skip to site footer
  • Login
  • Language
    • English
    • Język Polski
  • Menu
  • Home
  • Current
  • Online First
  • Archives
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  • Login
  • Language:
  • English
  • Język Polski

Topological Methods in Nonlinear Analysis

Some existence results for nonresonant difference equations on infinite intervals subject to nonlocal boundary conditions
  • Home
  • /
  • Some existence results for nonresonant difference equations on infinite intervals subject to nonlocal boundary conditions
  1. Home /
  2. Archives /
  3. Vol 65, No 1 (March 2025) /
  4. Articles

Some existence results for nonresonant difference equations on infinite intervals subject to nonlocal boundary conditions

Authors

  • Daniel Maroncelli https://orcid.org/0000-0002-5510-0370
  • Jesús Rodríguez

DOI:

https://doi.org/10.12775/TMNA.2024.025

Keywords

Multipoint boundary value problems, nonlocal boundary conditions, $\ell^p$-space, infinite time intervals, Schauder's fixed point theorem

Abstract

In this work we provide conditions for the existence of solutions to nonlinear boundary value problems of the form \begin{equation*} x_{k+1}=A_kx_k+f(k,x_k), \quad k\in\N_0:=\{0,1,\dots\}, \end{equation*} subject to boundary conditions \begin{equation*} \sum_{k=0}^\infty B_kx_k=G(x). \end{equation*} We will show that under appropriate assumptions on each $A_k$, $f$, each $B_k$, and $G$, $\ellp{n}$ solutions will exist for $p\in [1,\infty]$.

References

R.P. Agarwal, Difference Equations and Inequalities, Theory, Methods and Applications, Marcel Dekker, New York-Basel, 2000.

R.P. Agarwal and D. O’Regan, Boundary value problems for discrete equations, Appl. Math. Lett. 10 (1997), no. 4, 83–89.

R.P. Agarwal and D. O’Regan, Nonlinear Urysohn discrete equations on the infinite interval: a fixed-point approach, Comput. Math. Appl. 42 (2001), 273–281.

C. Bereanu, P. Jeblean and C. Serban, Periodic and Neumann problems for discrete p-Laplacian, J. Math. Anal. Appl. 399 (2013), no. 1, 75–87.

C. Bereanu and J. Mawhin, Existence and multiplicity results for periodic solutions of nonlinear difference equations, J. Difference Equ. Appl. 12 (2006), no. 7, 677–695.

G. Bonanno and P. Candito, Infinitely many solutions for a class of discrete nonlinear boundary value problems, Appl. Anal. 88 (2009), no. 4, 605–616.

G. D’Agui, J. Mawhin and A. Sciammetta, Positive solutions for a discrete two-point nonlinear boundary value problem with p-Laplacian, J. Math. Anal. Appl. 447 (2017), no. 1, 383–397.

S. Elaydi, An Introduction to Difference Equations, Springer, 2005.

B. Freedman and J. Rodrı́guez, On nonlinear boundary value problems in the discrete setting, J. Difference Equ. Appl. 25 (2019), no. 7, 994–1006.

J. Henderson, and R. Luca, Existence of positive solutions for a system of second-order multi-point discrete boundary value problems, J. Difference Equ. Appl. 19 (2013), no. 11, 1889–1906.

W.G. Kelley and A.C. Peterson, Difference Equations, Academic Press, New York, 1978.

D. Maroncelli and J. Rodrı́guez, Periodic behaviour of nonlinear, second-order discrete dynamical systems, J. Difference Equ. Appl. 22 (2016), no. 2, 280–294.

J. Rodrı́guez, Nonlinear discrete systems with global boundary conditions, J. Math. Anal. Appl. 286 (2003), no. 2, 782–794.

J. Rodrı́guez and D. Sweet, Discrete boundary value problems on infinite intervals, J. Difference Equ. Appl. 7 (2001), no. 3, 435–443.

R. Steglinski, Convex sets and n-order difference systems with nonlocal nonlinear boundary conditions, J. Difference Equ. Appl. (2018), 1065–1073.

Downloads

  • PREVIEW
  • FULL TEXT

Published

2025-02-14

How to Cite

1.
MARONCELLI, Daniel and RODRÍGUEZ, Jesús. Some existence results for nonresonant difference equations on infinite intervals subject to nonlocal boundary conditions. Topological Methods in Nonlinear Analysis. Online. 14 February 2025. Vol. 65, no. 1, pp. 123 - 143. [Accessed 28 June 2025]. DOI 10.12775/TMNA.2024.025.
  • ISO 690
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

Vol 65, No 1 (March 2025)

Section

Articles

License

Copyright (c) 2025 Daniel Maroncelli, Jesús Rodríguez

Creative Commons License

This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.

Stats

Number of views and downloads: 0
Number of citations: 0

Search

Search

Browse

  • Browse Author Index
  • Issue archive

User

User

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo

Newsletter

Subscribe Unsubscribe
Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop