Skip to main content Skip to main navigation menu Skip to site footer
  • Login
  • Language
    • English
    • Język Polski
  • Menu
  • Home
  • Current
  • Online First
  • Archives
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  • Login
  • Language:
  • English
  • Język Polski

Topological Methods in Nonlinear Analysis

Milnor attractors and period incrementing on pattern iterations of flat top tent maps
  • Home
  • /
  • Milnor attractors and period incrementing on pattern iterations of flat top tent maps
  1. Home /
  2. Archives /
  3. Vol 65, No 1 (March 2025) /
  4. Articles

Milnor attractors and period incrementing on pattern iterations of flat top tent maps

Authors

  • Luís Silva https://orcid.org/0000-0002-2517-7932
  • Teresa M. Silva https://orcid.org/0000-0002-4889-8695

DOI:

https://doi.org/10.12775/TMNA.2024.023

Keywords

Non-autonomous dynamical systems, interval maps, attractors, symbolic dynamics, bifurcation diagrams

Abstract

In this paper, we consider the family of non-autonomous dynamical systems obtained by iterating tent maps with a flat top of constant value $u$ introduced at instants $i$ such that $s_i=0$, where $s$ is a binary sequence that we call the iteration pattern. We introduce symbolic dynamics and study the kneading invariants for these dynamical systems. More precisely, we define the kneading invariants $K(u,s)$ as symbolic sequences and study sufficient conditions for a symbolic sequence to be a kneading invariant $K(u,s)$ for some $u$, for each iteration pattern $s$. Finally, we describe the parameters $u$ for which there are Milnor attractors for iteration patterns $s$ such that $s_{np}=0$ for all $n$, as limits of parameter sequences corresponding to local attractors, organized according to a period-incrementing structure.

References

V. Avrutin, B. Futter, L. Gardini and M. Schanz, Unstable orbits and Milnor attractors in the discontinuous flat top tent map, ESAIM Proc. 36 (2012), 126–158.

V. Avrutin, L. Gardini, I. Sushko and F. Tramontana, Continuous and Discontinuous Piecewise-Smooth One-Dimensional Maps: Invariant Sets and Bifurcation Structures, World Scientific Series on Nonlinear Science, Series A, Vol. 95, 2019.

P. Collet and J.-P. Eckmann, Iterated Maps on the Interval as Dynamical Systems, Birkhäuser, Boston, 2009.

N.J. Corron, S.D. Pethel, and B.A. Hopper, Controlling chaos with simple limiters, Phys. Rev. Lett. 84 (2000), no. 17, 3835–3838.

M.-F. Danca, P. Bourke and M. Romera, Graphical exploration of the connectivity sets of alternated julia sets, Nonlinear Dynamics 73( 2013), no. 1–2, 1155–1163.

M.-F. Danca, M. Romera and G. Pastor Alternated julia sets and connectivity properties, Internat. J. Bifur. Chaos 19 (2009), no. 6, 2123–2129.

L. Glass and W. Zeng, Bifurcations in flat-topped maps and the control of cardiac chaos, Internat. J. Bifur. Chaos 4 (1994), 1061–1067.

X.-Z. He and F.H. Westerhoff, Commodity markets, price limiters and speculative price dynamics, J. Econ. Dyn. Control 29 (2005), 1577–1596.

F. M. Hilker and F.H. Westeroff, Paradox of simple limiter control, Phys. Rev. E 73 (2006), 052901.

J. Milnor, On the concept of attractor, Commun. Math. Phys. 99 (1985), 177–195.

J. Milnor and W. Thurston, On iterated maps of the interval, Dynamical Systems (College Park, MD, 1986–1987), Lecture Notes in Math., vol. 1342, Springer, Berlin, 1988, pp. 465–563.

K. Myneni, T.A. Barr, N.J. Corron and S.D. Pethel New method for the control of fast chaotic oscillations, Phys. Rev. Lett. 83 (1999), 2175–2178.

C. Pötzsche, Bifurcations in non-autonomous dynamical systems: results and tools in discrete time, Proceedings of the International Workshop Future Directions in Difference Equations (E. Liz and V. Mañosa, eds.), Universidade de Vigo, Vigo, 2011, pp. 163–212.

L. Silva, Periodic attractors of non-autonomous flat-topped tent systems, Discrete Contin. Dyn. Sys. B 24 (2018), 1867–1874.

L. Silva, Attractors in pattern iterations of flat top tent maps, Mathematics 11 (2023), no. 12, 2677.

R. Stoop and C. Wagner, Scaling properties of simple limiter control, Phys. Rev. Lett. 90 (2003), 154101–154104.

R. Stoop and C. Wagner, Optimized chaos control with simple limiters, Phys. Rev. E 63 (2000), 17201–17203.

R. Stoop and C. Wagner, Renormalization approach to optimal limiter control in 1-D chaotic systems, J. Stat. Phys. 106 (2002), 97–106.

Downloads

  • PREVIEW
  • FULL TEXT

Published

2025-02-13

How to Cite

1.
SILVA, Luís and SILVA, Teresa M. Milnor attractors and period incrementing on pattern iterations of flat top tent maps. Topological Methods in Nonlinear Analysis. Online. 13 February 2025. Vol. 65, no. 1, pp. 79 - 97. [Accessed 28 June 2025]. DOI 10.12775/TMNA.2024.023.
  • ISO 690
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

Vol 65, No 1 (March 2025)

Section

Articles

License

Copyright (c) 2025 Luís Silva, Teresa M. Silva

Creative Commons License

This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.

Stats

Number of views and downloads: 0
Number of citations: 0

Search

Search

Browse

  • Browse Author Index
  • Issue archive

User

User

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo

Newsletter

Subscribe Unsubscribe
Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop