Deformational symmetries of smooth functions on non-orientable surfaces
DOI:
https://doi.org/10.12775/TMNA.2024.022Keywords
Diffeomorphism, Morse function, Milnor number, Möbius band, foliationAbstract
Given a compact surface $M$, consider the natural right action of the group of diffeomorphisms $\mathcal{D}(M)$ of $M$ on $\mathcal{C}^{\infty}(M,\mathbb{R})$ defined by the rule: $(f,h)\mapsto f\circ h$ for $f\in \mathcal{C}^{\infty}(M,\mathbb{R})$ and $h\in\mathcal{D}(M)$. Denote by $\mathcal{F}(M)$ the subset of $\mathcal{C}^{\infty}(M,\mathbb{R})$ consisting of functions $\func\colon M\to\mathbb{R}$ taking constant values on connected components of $\partial{M}$, having no critical points on $\partial{M}$, and such that at each of its critical points $z$ the function $f$ is $\mathcal{C}^{\infty}$ equivalent to some homogenenous polynomial without multiple factors. In particular, $\mathcal{F}(M)$ contains all Morse maps. Let also $\mathcal{O}(f) = \{ f\circ h \mid h\in\mathcal{D}(M) \}$ be the orbit of $f$. Previously, the algebraic structure of $\pi_1\mathcal{O}(f)$ was computed for all $f\in\mathcal{F}(M)$, where $M$ is any orientable compact surface distinct from $2$-sphere. In the present paper we compute the group $\pi_0\mathcal{S}(f,\partial\mathbb{M})$, where $\mathbb{M}$ is a Möbius band, and $\mathcal{S}(f,\partial\mathbb{M}) = \{ h\in\mathcal{D}(\mathbb{M}) \mid f\circ h = f, \ h|_{\partial \mathbb{M}} = \mathrm{id}_{\mathbb{M}}\}$ is the subgroup of the corresponding stabilizer of $f$ consisting of diffeomorphisms fixed on the boundary $\partial \mathbb{M}$. As a consequence we obtain an explicit algebraic description of $\pi_1\mathcal{O}(f)$ for all non-orientable surfaces distinct from Klein bottle and projective plane.References
G.M. Adelson-Welsky and A.S. Kronrode, Sur les lignes de niveau des fonctions continues possdant des dérivées partielles, C.R. (Doklady) Acad. Sci. URSS (N.S.) 49 (1945), 235–237.
V.I. Arnol’d, Snake calculus and the combinatorics of the Bernoulli, Euler and Springer numbers of Coxeter groups, Uspekhi Mat. Nauk 47 (1992), no. 1 (283), 3–45; Russian Math. Surveys 47 (1992), 1–51; DOI: 10.1070/RM1992v047n01ABEH000861.
P.T. Church and J.G. Timourian, Differentiable open maps of (p + 1)-manifold to p-manifold, Pacific J. Math. 48 (1973), 35–45, http://projecteuclid.org/euclid.pjm/1102945698.
E.N. Dancer, Degenerate critical points, homotopy indices and Morse inequalities II, J. Reine Angew. Math. 382 (1987), 145–164.
C.J. Earle and J. Eells, A fibre bundle description of teichmüller theory, J. Differential Geometry 3 (1969), 19–43.
C.J. Earle and A. Schatz Teichmüller theory for surfaces with boundary, J. Differential Geometry 4 (1970), 169–185, DOI: 10.4310/jdg/1214429381.
B. Feshchenko, Deformation of smooth functions on 2-torus whose Kronrod–Reeb graphs is a tree, Pr. Inst. Mat. Nats. Akad. Nauk Ukr. Mat. Zastos. 12 (2015), no. 6, 204–219.
B. Feshchenko, Actions of finite groups and smooth functions on surfaces, Methods Funct. Anal. Topology 22 (2016), no. 3, 210–219.
B. Feshchenko, Deformations of smooth functions on 2-torus, Proc. Int. Geom. Cent. 12 (2019), no. 3, 30–50, DOI: 10.15673/tmgc.v12i3.1528.
B. Feshchenko, Deformations of circle-valued functions on 2-torus, Proc. Int. Geom. Cent. 14 (2021), no. 2, 117–136, DOI: 10.15673/tmgc.v14i2.2008.
A. Gramain, Le type dhomotopie du groupe des diffomorphismes dune surface compacte, Ann. Sci. École Norm. Sup. (4) 6 (1973), 53–66, DOI: 10.24033/asens.1242.
G.-M. Greuel, C. Lossen and E. Shustin, Introduction to Singularities and Deformations, Springer Monographs in Mathematics, Springer, Berlin, 2007.
R.S. Hamilton, The inverse function theorem of Nash and Moser, Bull. Amer. Math. Soc. (N.S.) 7 (1982), no. 1, 65–222, DOI: 10.1090/S0273-0979-1982-15004-2.
B. Hladysh and A. Prishlyak, Simple Morse functions on an oriented surface with boundary, J. Math. Phys. Anal. Geom. 15 (2019), no. 3, 354–368, DOI: 10.15407/mag15.03.354.
A.S. Kronrod On functions of two variables, Uspehi Matem. Nauk (N.S.) 5 (1950), no. 1 (35), 24–134.
E. Kudryavtseva, Connected components of spaces of Morse functions with fixed critical points, Vestnik Moskov. Univ. Ser. I Mat. Mekh. 1 (2012), 3–12, DOI: 10.3103/S0027132212010019.
E. Kudryavtseva, Special framed Morse functions on surfaces, Vestnik Moskov. Univ. Ser. I Mat. Mekh. 4 (2012), 14–20, DOI: 10.3103/S0027132212040031.
E. Kudryavtseva, The topology of spaces of Morse functions on surfaces, Mat. Zametki 92 (2012), no. 2, 241–261; English transl.: Math. Notes 92 (2012), no. 1–2, 219–236, DOI: 10.1134/S0001434612070243.
E. Kudryavtseva, On the homotopy type of spaces of Morse functions on surfaces, Mat. Sb. 204 (2013), no. 1, 79–118, DOI: 10.1070/SM2013v204n01ABEH004292.
E. Kudryavtseva, Topology of spaces of functions with prescribed singularities on the surfaces, Dokl. Akad. Nauk 468 (2016), no. 2, 139–142, DOI: 10.1134/s1064562416030066.
I. Kuznietsova and S. Maksymenko, Homotopy properties of smooth functions on the Möbius band, Proc. Int. Geom. Cent. 12 (2019), no. 3, 1–29, DOI: 10.15673/tmgc.v12i3.1488.
I. Kuznietsova and S. Maksymenko, Reversing orientation homeomorphisms of surfaces, Proc. Int. Geom. Cent. 13 (2020), no. 4, 129–159, DOI: 10.15673/tmgc.v13i4.1953.
I. Kuznietsova and Yu. Soroka, First Betti numbers of orbits of Morse functions on surfaces, Ukraı̈n. Mat. Zh. 73 (2021), no. 2, 179–200, DOI: 10.37863/umzh.v73i2.2383.
S. Maksymenko, Is that true that each ideal I ⊂ k[x1 , . . . , xn ] of finite k-codimension contains all monomials of sufficiently high degree? MathOverflow, https://mathoverflow.net/q/450882.
S. Maksymenko, Homotopy types of stabilizers and orbits of Morse functions on surfaces, Ann. Global Anal. Geom. 29 (2006), no. 3, 241–285, DOI: 10.1007/s10455-005-9012-6.
S. Maksymenko, Homotopy dimension of orbits of Morse functions on surfaces Trav. Math. 18 (2008), 39–44, arXiv: 0710.4437.
S. Maksymenko, Connected components of partition preserving diffeomorphisms, Methods Funct. Anal. Topology 15 (2009), no. 3, 264–279, http://mfat.imath.kiev.ua/article/?id=476.
S. Maksymenko, Functions on surfaces and incompressible subsurfaces, Methods Funct. Anal. Topology 16 (2010), no. 2, 167–182, arXiv: 1001.1346.
S. Maksymenko, Homotopy types of right stabilizers and orbits of smooth functions functions on surfaces, Ukrainian Math. J. 64 (2012), no. 9, 1186–1203, DOI: 10.1007/s11253013-0721-x.
S. Maksymenko, Deformations of functions on surfaces, Proc. Inst. Math. Natl. Acad. Sci. Ukraine 17 (2020), no. 2, 150–199.
S. Maksymenko, Deformations of functions on surfaces by isotopic to the identity diffeomorphisms, Topology Appl. 282 (2020), 107312, 48, DOI: 10.1016/j.topol.2020.107312.
S. Maksymenko, Topological actions of wreath products, European J. Math. 10 (2024), 34 pp., DOI: 10.1007/s40879-024-00732-6.
S. Maksymenko and B. Feshchenko, Homotopy properties of spaces of smooth functions on 2-torus, Ukrainian Math. J. 66 (2014), no. 9, 1205–1212, arXiv: 1401.2296.
S. Maksymenko and B. Feshchenko, Orbits of smooth functions on 2-torus and their homotopy types, Mat. Stud. 44 (2015), no. 1, 67–84, arXiv: 1409.0502.
S. Maksymenko and B. Feshchenko, Smooth functions on 2-torus whose Kronrod–Reeb graph contains a cycle, Methods Funct. Anal. Topology 21 (2015), no. 1, 22–40, arXiv: 1411.6863.
D. Pasechnik, Do relatively prime polynomials f and g in k[x, y] generate an ideal of finite codimension? MathOverflow, https://mathoverflow.net/q/396358.
A.O. Prishlyak, Conjugacy of Morse functions on surfaces with values on the line and circle, Ukraı̈n. Mat. Zh. 52 (2000), no. 10, 1421–1425, DOI: 10.1023/A:1010461319703.
A.O. Prishlyak, Topological equivalence of smooth functions with isolated critical points on a closed surface, Topology Appl. 119 (2002), no. 3, 257–267, DOI: 10.1016/S01668641(01)00077-3.
G. Reeb, Sur les points singuliers dune forme de Pfaff complètement intǵrable ou dune fonction numŕique, C.R. Acad. Sci. Paris 222 (1946), 847–849.
F. Sergeraert, Un théorème de fonctions implicites sur certains espaces de Fréchet et quelques applications, Ann. Sci. École Norm. Sup. (4) 5 (1972), 599–660.
J.-C. Tougeron, Idéaux de fonctions différentiables I, Ann. Inst. Fourier (Grenoble) 18 (1968), fasc. 1, 177–240.
Published
How to Cite
Issue
Section
Stats
Number of views and downloads: 0
Number of citations: 0