Skip to main content Skip to main navigation menu Skip to site footer
  • Login
  • Language
    • English
    • Język Polski
  • Menu
  • Home
  • Current
  • Online First
  • Archives
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  • Login
  • Language:
  • English
  • Język Polski

Topological Methods in Nonlinear Analysis

Ground state solutions for a critical fractional Laplacian equation in unbounded domains: existence and regularity
  • Home
  • /
  • Ground state solutions for a critical fractional Laplacian equation in unbounded domains: existence and regularity
  1. Home /
  2. Archives /
  3. Vol 64, No 2 (December 2024) /
  4. Articles

Ground state solutions for a critical fractional Laplacian equation in unbounded domains: existence and regularity

Authors

  • Yansheng Shen

DOI:

https://doi.org/10.12775/TMNA.2024.020

Keywords

Fractional Laplacian, ground state solutions, critical exponents, variational techniques, unbounded strip-like domains}

Abstract

In this work we study the following fractional critical problem \begin{align*} \begin{cases} (-\Delta)^{s}u=\lambda|u|^{q-2}u+|u|^{2_{s}^{\ast}-2}u & \mbox{in } \Omega, \\ u=0 & \text{in }\mathbb{R}^{N}\setminus \Omega, \end{cases} \end{align*} where $\Omega$ is an open unbounded strip-like domain in $\mathbb{R}^{N}$, $N> 2s$ with $s\in(0,1)$, $\lambda> 0$, $q\in[2,2_{s}^{\ast})$ and $2_{s}^{\ast}=2N/(N-2s)$. By variational methods, we prove the existence of positive ground state solutions to the problem. Further, we study the regularity of these solutions. Precisely, using a Brézis-Kato type estimate for unbounded domains, we establish the $L^{\infty}$-bound on nonnegative solutions of the equation for certain range of $q$. The present work extends the existence and regularity results for fractional Laplace equations to unbounded domains.

References

C.O. Alves and Y.H. Ding, Multiplicity of positive solutions to a p-Laplacian equation involving critical nonlinearity, J. Math. Anal. Appl. 279 (2003), 508–521.

A. Ambrosetti and P.H. Rabinowitz, Dual variational methods in critical point theory and applications, J. Funct. Anal. 14 (1973), 349–381.

V. Ambrosio, L. Freddi and R. Musina, Asymptotic analysis of the Dirichlet fractional Laplacian in domains becoming unbounded, J. Math. Anal. Appl. 485 (2020), 17 pp.

B. Barrios, E. Colorado, R. Servadei and F. Soria, A critical fractional equation with concave-convex power nonlinearities, Ann. Inst. H. Poincaré C Anal. Non Linéaire 32 (2015), 875–900.

J. Bonder, N. Saintier and A. Silva, The concentration-compactness principle for fractional order Sobolev spaces in unbounded domains and applications to the generalized fractional Brézis–Nirenberg problem, NoDEA Nonlinear Differential Equations Appl. 25 (2018), paper no. 52, 25 pp.

H. Brézis and S. Kamin, Sublinear elliptic equations in Rn , Manuscripta Math. 74 (1992), 87–106.

H. Brézis and T. Kato, Remarks on the Schrödinger operator with singular complex potentials, J. Math. Pures Appl. 58 (1979), 137–151.

H. Brézis and L. Nirenberg, Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents, Comm. Pure Appl. Math. 36 (1983), 437–477.

H. Brézis and E. Lieb, A relation between pointwise convergence of functions and convergence of functionals, Proc. Amer. Math. Soc. 88 (1983), 486–490.

D. Cao, S. Peng and S. Yan, Infinitely many solutions for p-Laplacian equation involving critical Sobolev growth, J. Funct. Anal. 262 (2012), 2861–2902.

G. Cerami, S. Solimini and M. Struwe, Some existence results for superlinear elliptic boundary value problems involving critical exponents, J. Funct. Anal. 69 (1986), 289–306.

W. Chen, S. Mosconi and M. Squassina, Nonlocal problems with critical Hardy nonlinearity, J. Funct. Anal. 275 (2018), 3065–3114.

S. Cingolani and G. Vannella, Multiple positive solutions for a critical quasilinear equation via Morse theory, Ann. Inst. H. Poincaré C Anal. Non Linéaire 26 (2009), 397–413.

S. Cingolani and G. Vannella, The Brézis–Nirenberg type problem for the p-Laplacian (1 < p < 2): multiple positive solutions, J. Differential Equations 266 (2019), 4510–4532.

I. Chowdhury, G. Csató, P. Roy and F. Sk, Study of fractional Poincaré inequalities on unbounded domains, Discrete Contin. Dyn. Syst. 41 (2021), 2993–3020.

G. Cora and A. Iacopetti, On the structure of the nodal set and asymptotics of least energy sign-changing radial solutions of the fractional Brézis-Nirenberg problem, Nonlinear Anal. 176 (2018), 226–271.

A. Cotsiolis and N. Tavoularis, Best constants for Sobolev inequalities for higher order fractional derivatives, J. Math. Anal. Appl. 295 (2004), 225–236.

D.C. de Morais Filho and M.A.S. Souto, Systems of p-Laplacean equations involving homogeneous nonlinearities with critical Sobolev exponent degrees, Comm. Partial Differential Equations 24 (1999), 1537–1553.

E. Di Nezza, G. Palatucci and E. Valdinoci, Hitchhiker’s guide to the fractional Sobolev spaces, Bull. Sci. Math. 136 (2012), 521–573.

H. Egnell, Existence and nonexistence results for m-Laplace equations involving critical Sobolev exponents, Arch. Rational Mech. Anal. 104 (1988), 57–77.

G. Figueiredo, G. Molica Bisci and R. Servadei, The effect of the domain topology on the number of solutions of fractional Laplace problems, Calc. Var. Partial Differential Equations 57 (2018), 24 pp.

A. Fiscella, R. Servadei and E. Valdinoci, Density properties for fractional Sobolev spaces, Ann. Acad. Sci. Fenn. Math. 40 (2015), 235–253.

J. Garcı́a Azorero and I. Peral, Existence and nonuniqueness for the p-Laplacian: nonlinear eigenvalues, Comm. Partial Differential Equations 12 (1987), 1389–1430.

J. Garcı́a Azorero and I. Peral, Multiplicity of solutions for elliptic problems with critical exponent or with a nonsymmetric term, Trans. Amer. Math. Soc. 323 (1991), 877–895.

Y. Guo, B. Li, A. Pistoia and S. Yan, The fractional Brézis–Nirenberg problems on lower dimensions, J. Differential Equations 286 (2021), 284–331.

T. He, L. He and M. Zhang, The Brézis–Nirenberg type problem for the p-Laplacian: infinitely many sign-changing solutions, Calc. Var. Partial Differential Equations 59 (2020), 14 pp.

M.K. Kwong and Y. Li, Uniqueness of radial solutions of semilinear elliptic equations, Trans. Amer. Math. Soc. 333 (1992), 339–363.

T. Leonori, I. Peral, A. Primo and F. Soria, Basic estimates for solutions of a class of nonlocal elliptic and parabolic equations, Discrete Contin. Dyn. Syst. 35 (2015), 6031–6068.

P.-L. Lions, The concentration-compactness principle in the calculus of variations. The limit case, II, Rev. Mat. Iberoamericana 1 (1985), 45–121.

P.-L. Lions, The concentration-compactness principle in the calculus of variations. The limit case, I, Rev. Mat. Iberoamericana 1 (1985), 145–201.

C. Mercuri and K. Perera, New multiplicity results for critical p-Laplacian problems, J. Funct. Anal. 283 (2022), 24 pp.

S. Mosconi and M. Squassina, Nonlocal problems at nearly critical growth, Nonlinear Anal. 136 (2016), 84–101.

D. Mukherjee, On the existence of multiple solutions for fractional Brézis–Nirenbergtype equations, Math. Nachr. 295 (2022), 2405–2421.

M. Ramos, Z.-Q. Wang and M. Willem, Positive solutions for elliptic equations with critical growth in unbounded domains, Calculus of Variations and Differential Equations, Chapman Hall/CRC Press, Boca Raton, 2000, pp. 192–199.

R. Servadei, A critical fractional Laplace equation in the resonant case, Topol. Methods Nonlinear Anal. 43 (2014), 251–267.

R. Servadei and E. Valdinoci, A Brézis–Nirenberg result for non-local critical equations in low dimension, Commun. Pure Appl. Anal. 12 (2013), 2445–2464.

R. Servadei and E. Valdinoci, The Brézis–Nirenberg result for the fractional Laplacian, Trans. Amer. Math. Soc. 367 (2015), 67–102.

Y. Shen, Multiplicity of positive solutions to a critical fractional equation with Hardy potential and concave-convex nonlinearities, Complex Var. Elliptic Equ. 67 (2022), 2152–2180.

Y. Shen, A fractional Hardy–Sobolev type inequality with applications to nonlinear elliptic equations with critical exponent and Hardy potential, Discrete Contin. Dyn. Syst. 44 (2024), 1901–1937.

P.N. Srikanth, Uniqueness of solutions of nonlinear Dirichlet problems, Differential Integral Equations 6 (1993), 663–670.

X. Wang and Y. Shen, Existence results for fractional Brézis–Nirenberg type problems in unbounded domains, Topol. Methods Nonlinear Anal. 60 (2022), 517–546.

K. Yeressian, Asymptotic behavior of elliptic nonlocal equations set in cylinders, Asymptot. Anal. 89 (2014), 21–35.

L. Zhang, Uniqueness of positive solutions of ∆u + u + up = 0 in a ball, Comm. Partial Differential Equations 17 (1992), 1141–1164.

Downloads

  • PREVIEW
  • FULL TEXT

Published

2024-12-28

How to Cite

1.
SHEN, Yansheng. Ground state solutions for a critical fractional Laplacian equation in unbounded domains: existence and regularity. Topological Methods in Nonlinear Analysis. Online. 28 December 2024. Vol. 64, no. 2, pp. 621 - 653. [Accessed 27 December 2025]. DOI 10.12775/TMNA.2024.020.
  • ISO 690
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

Vol 64, No 2 (December 2024)

Section

Articles

License

Copyright (c) 2024 Yansheng Shen

Creative Commons License

This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.

Stats

Number of views and downloads: 0
Number of citations: 0

Search

Search

Browse

  • Browse Author Index
  • Issue archive

User

User

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo

Newsletter

Subscribe Unsubscribe
Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop