On the monotonicity of non-local perimeter of convex bodies
DOI:
https://doi.org/10.12775/TMNA.2024.019Keywords
Convex body, non-local perimeter, monotonicity, Hausdorff distance, Schwartz symmetrizationAbstract
Under mild assumptions on the kernel $K\ge0$, the non-local $K$-perimeter $P_K$ satisfies the monotonicity property on nested convex bodies; i.e.\ if $A\subset B\subset\mathbb{R}^n$ are two convex bodies, then $P_K(A)\le P_K(B)$. In this note, we prove quantitative lower bounds on the difference of the $K$-perimeters of $A$ and $B$ in terms of their Hausdorff distance, provided that $K$ satisfies suitable symmetry properties.References
L. Ambrosio, G. De Philippis and L. Martinazzi, Gamma-convergence of nonlocal perimeter functionals, Manuscripta Math. 134 (2011), no. 3–4, 377–403.
Archimedes, The works of Archimedes, vol. I, critical edition, Cambridge University Press, Cambridge, 2004.
J. Berendsen and V. Pagliari, On the asymptotic behaviour of nonlocal perimeters, ESAIM Control Optim. Calc. Var. 25 (2019), paper no. 48, 27.
R.J. Berman, Convergence rates for discretized Monge–Ampère equations and quantitative stability of optimal transport, Found. Comput. Math. 21 (2021), no. 4, 1099–1140.
K. Bessas and G. Stefani, Non-local BV functions and a denoising model with L1 fidelity, Adv. Calc. Var. (2024), DOI: 10.1515/acv-2023-0082 (ahead of print).
T. Bonnesen and W. Fenchel, Theory of Convex Bodies (L. Boron, C. Christenson, and B. Smith, eds.), BCS Associates, Moscow, ID, 1987.
H.J. Brascamp, E.H. Lieb and J.M. Luttinger, A general rearrangement inequality for multiple integrals, J. Funct. Anal. 17 (1974), 227–237.
G. Buttazzo, V. Ferone and B. Kawohl, Minimum problems over sets of concave functions and related questions, Math. Nachr. 173 (1995), 71–89.
X. Cabré, Calibrations and null-Lagrangians for nonlocal perimeters and an application to the viscosity theory, Ann. Mat. Pura Appl. (4) 199 (2020), no. 5, 1979–1995.
M. Carozza, F. Giannetti, F. Leonetti and A. Passarelli di Napoli, A sharp quantitative estimate for the perimeters of convex sets in the plane, J. Convex Anal. 22 (2015), no. 3, 853–858.
M. Carozza, F. Giannetti, F. Leonetti and A. Passarelli di Napoli, A sharp quantitative estimate for the surface areas of convex sets in R3 , Atti Accad. Naz. Lincei Rend. Lincei Mat. Appl. 27 (2016), no. 3, 327–333.
M. Carozza, F. Giannetti, F. Leonetti and A. Passarelli di Napoli, Convex components, Commun. Contemp. Math. 21 (2019), no. 6, paper no. 1850036, 10 pp.
A. Cesaroni and M. Novaga, The isoperimetric problem for nonlocal perimeters, Discrete Contin. Dyn. Syst. Ser. S 11 (2018), no. 3, 425–440.
A. Cesaroni and M. Novaga, K-mean convex and K-outward minimizing sets, Interfaces Free Bound. 24 (2022), no. 1, 35–61.
A. Chambolle, M. Morini and M. Ponsiglione, Nonlocal curvature flows, Arch. Ration. Mech. Anal. 218 (2015), no. 3, 1263–1329.
E. Cinti, J. Serra and E. Valdinoci, Quantitative flatness results and BV -estimates for stable nonlocal minimal surfaces, J. Differential Geom. 112 (2019), no. 3, 447–504.
L. De Luca, M. Novaga and M. Ponsiglione, The 0-fractional perimeter between fractional perimeters and Riesz potentials, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 22 (2021), no. 4, 1559–1596.
J. Dekeyser and J. Van Schaftingen, Range convergence monotonicity for vector measures and range monotonicity of the mass, Ric. Mat. 69 (2020), no. 1, 293–326.
E. Di Nezza, G. Palatucci and E. Valdinoci, Hitchhiker’s guide to the fractional Sobolev spaces, Bull. Sci. Math. 136 (2012), no. 5, 521–573.
Q. Du, X.Y. Lu, and C. Wang, The average-distance problem with an Euler elastica penalization, Interfaces Free Bound. 24 (2022), no. 1, 137–162.
A. Figalli, N. Fusco, F. Maggi, V. Millot and M. Morini, Isoperimetry and stability properties of balls with respect to nonlocal energies, Comm. Math. Phys. 336 (2015), no. 1, 441–507.
V. Franceschi, A. Pinamonti, G. Saracco and G. Stefani, The Cheeger problem in abstract measure spaces, J. London Math. Soc. 109 (2024), no. 1, paper no. e12840, 55 pp.
F. Giannetti, Sharp geometric quantitative estimates, Atti Accad. Naz. Lincei Rend. Lincei Mat. Appl. 28 (2017), no. 1, 1–6.
F. Giannetti and G. Stefani, On the convex components of a set in Rn , Forum Math. 35 (2023), no. 1, 187–199.
R. Hynd, A doubly monotone flow for constant width bodies in R3 , Geometric and Functional Inequalities and Recent Topics in Nonlinear PDEs, Contemp. Math., vol. 781, Amer. Math. Soc., Providence, RI, 2023, pp. 49–101.
A. Kreuml, The anisotropic fractional isoperimetric problem with respect to unconditional unit balls, Commun. Pure Appl. Anal. 20 (2021), no. 2, 783–799.
M. La Civita and F. Leonetti, Convex components of a set and the measure of its boundary, Atti Semin. Mat. Fis. Univ. Modena Reggio Emilia 56 (2008/2009), 71–78.
E.H. Lieb and M. Loss, Analysis, 2nd ed., Graduate Studies in Mathematics, vol. 14, American Mathematical Society, Providence, RI, 2001.
M. Ludwig, Anisotropic fractional perimeters, J. Differential Geom. 96 (2014), no. 1, 77–93.
F. Maggi, Sets of finite perimeter and geometric variational problems, Cambridge Studies in Advanced Mathematics, vol. 135, Cambridge University Press, Cambridge, 2012.
A. Melchionna, The sandpile identity element on an ellipse, Discrete Contin. Dyn. Syst. 42 (2022), no. 8, 3709–3732.
V. Pagliari, Halfspaces minimise nonlocal perimeter: a proof via calibrations, Ann. Mat. Pura Appl. (4) 199 (2020), no. 4, 1685–1696.
G. Saracco and G. Stefani, On the monotonicity of weighted perimeters of convex bodies, Math. Nachr. (2023), 1–7.
R. Schneider, Convex Bodies: the Brunn–Minkowski Theory, expanded edition, Encyclopedia of Mathematics and its Applications, vol. 151, Cambridge University Press, Cambridge, 2014.
G. Stefani, On the monotonicity of perimeter of convex bodies, J. Convex Anal. 25 (2018), no. 1, 93–102.
Published
How to Cite
Issue
Section
Stats
Number of views and downloads: 0
Number of citations: 0