Skip to main content Skip to main navigation menu Skip to site footer
  • Login
  • Language
    • English
    • Język Polski
  • Menu
  • Home
  • Current
  • Online First
  • Archives
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  • Login
  • Language:
  • English
  • Język Polski

Topological Methods in Nonlinear Analysis

On the monotonicity of non-local perimeter of convex bodies
  • Home
  • /
  • On the monotonicity of non-local perimeter of convex bodies
  1. Home /
  2. Archives /
  3. Vol 64, No 2 (December 2024) /
  4. Articles

On the monotonicity of non-local perimeter of convex bodies

Authors

  • Flavia Giannetti https://orcid.org/0000-0002-2461-0845
  • Giorgio Stefani https://orcid.org/0000-0002-1592-8288

DOI:

https://doi.org/10.12775/TMNA.2024.019

Keywords

Convex body, non-local perimeter, monotonicity, Hausdorff distance, Schwartz symmetrization

Abstract

Under mild assumptions on the kernel $K\ge0$, the non-local $K$-perimeter $P_K$ satisfies the monotonicity property on nested convex bodies; i.e.\ if $A\subset B\subset\mathbb{R}^n$ are two convex bodies, then $P_K(A)\le P_K(B)$. In this note, we prove quantitative lower bounds on the difference of the $K$-perimeters of $A$ and $B$ in terms of their Hausdorff distance, provided that $K$ satisfies suitable symmetry properties.

References

L. Ambrosio, G. De Philippis and L. Martinazzi, Gamma-convergence of nonlocal perimeter functionals, Manuscripta Math. 134 (2011), no. 3–4, 377–403.

Archimedes, The works of Archimedes, vol. I, critical edition, Cambridge University Press, Cambridge, 2004.

J. Berendsen and V. Pagliari, On the asymptotic behaviour of nonlocal perimeters, ESAIM Control Optim. Calc. Var. 25 (2019), paper no. 48, 27.

R.J. Berman, Convergence rates for discretized Monge–Ampère equations and quantitative stability of optimal transport, Found. Comput. Math. 21 (2021), no. 4, 1099–1140.

K. Bessas and G. Stefani, Non-local BV functions and a denoising model with L1 fidelity, Adv. Calc. Var. (2024), DOI: 10.1515/acv-2023-0082 (ahead of print).

T. Bonnesen and W. Fenchel, Theory of Convex Bodies (L. Boron, C. Christenson, and B. Smith, eds.), BCS Associates, Moscow, ID, 1987.

H.J. Brascamp, E.H. Lieb and J.M. Luttinger, A general rearrangement inequality for multiple integrals, J. Funct. Anal. 17 (1974), 227–237.

G. Buttazzo, V. Ferone and B. Kawohl, Minimum problems over sets of concave functions and related questions, Math. Nachr. 173 (1995), 71–89.

X. Cabré, Calibrations and null-Lagrangians for nonlocal perimeters and an application to the viscosity theory, Ann. Mat. Pura Appl. (4) 199 (2020), no. 5, 1979–1995.

M. Carozza, F. Giannetti, F. Leonetti and A. Passarelli di Napoli, A sharp quantitative estimate for the perimeters of convex sets in the plane, J. Convex Anal. 22 (2015), no. 3, 853–858.

M. Carozza, F. Giannetti, F. Leonetti and A. Passarelli di Napoli, A sharp quantitative estimate for the surface areas of convex sets in R3 , Atti Accad. Naz. Lincei Rend. Lincei Mat. Appl. 27 (2016), no. 3, 327–333.

M. Carozza, F. Giannetti, F. Leonetti and A. Passarelli di Napoli, Convex components, Commun. Contemp. Math. 21 (2019), no. 6, paper no. 1850036, 10 pp.

A. Cesaroni and M. Novaga, The isoperimetric problem for nonlocal perimeters, Discrete Contin. Dyn. Syst. Ser. S 11 (2018), no. 3, 425–440.

A. Cesaroni and M. Novaga, K-mean convex and K-outward minimizing sets, Interfaces Free Bound. 24 (2022), no. 1, 35–61.

A. Chambolle, M. Morini and M. Ponsiglione, Nonlocal curvature flows, Arch. Ration. Mech. Anal. 218 (2015), no. 3, 1263–1329.

E. Cinti, J. Serra and E. Valdinoci, Quantitative flatness results and BV -estimates for stable nonlocal minimal surfaces, J. Differential Geom. 112 (2019), no. 3, 447–504.

L. De Luca, M. Novaga and M. Ponsiglione, The 0-fractional perimeter between fractional perimeters and Riesz potentials, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 22 (2021), no. 4, 1559–1596.

J. Dekeyser and J. Van Schaftingen, Range convergence monotonicity for vector measures and range monotonicity of the mass, Ric. Mat. 69 (2020), no. 1, 293–326.

E. Di Nezza, G. Palatucci and E. Valdinoci, Hitchhiker’s guide to the fractional Sobolev spaces, Bull. Sci. Math. 136 (2012), no. 5, 521–573.

Q. Du, X.Y. Lu, and C. Wang, The average-distance problem with an Euler elastica penalization, Interfaces Free Bound. 24 (2022), no. 1, 137–162.

A. Figalli, N. Fusco, F. Maggi, V. Millot and M. Morini, Isoperimetry and stability properties of balls with respect to nonlocal energies, Comm. Math. Phys. 336 (2015), no. 1, 441–507.

V. Franceschi, A. Pinamonti, G. Saracco and G. Stefani, The Cheeger problem in abstract measure spaces, J. London Math. Soc. 109 (2024), no. 1, paper no. e12840, 55 pp.

F. Giannetti, Sharp geometric quantitative estimates, Atti Accad. Naz. Lincei Rend. Lincei Mat. Appl. 28 (2017), no. 1, 1–6.

F. Giannetti and G. Stefani, On the convex components of a set in Rn , Forum Math. 35 (2023), no. 1, 187–199.

R. Hynd, A doubly monotone flow for constant width bodies in R3 , Geometric and Functional Inequalities and Recent Topics in Nonlinear PDEs, Contemp. Math., vol. 781, Amer. Math. Soc., Providence, RI, 2023, pp. 49–101.

A. Kreuml, The anisotropic fractional isoperimetric problem with respect to unconditional unit balls, Commun. Pure Appl. Anal. 20 (2021), no. 2, 783–799.

M. La Civita and F. Leonetti, Convex components of a set and the measure of its boundary, Atti Semin. Mat. Fis. Univ. Modena Reggio Emilia 56 (2008/2009), 71–78.

E.H. Lieb and M. Loss, Analysis, 2nd ed., Graduate Studies in Mathematics, vol. 14, American Mathematical Society, Providence, RI, 2001.

M. Ludwig, Anisotropic fractional perimeters, J. Differential Geom. 96 (2014), no. 1, 77–93.

F. Maggi, Sets of finite perimeter and geometric variational problems, Cambridge Studies in Advanced Mathematics, vol. 135, Cambridge University Press, Cambridge, 2012.

A. Melchionna, The sandpile identity element on an ellipse, Discrete Contin. Dyn. Syst. 42 (2022), no. 8, 3709–3732.

V. Pagliari, Halfspaces minimise nonlocal perimeter: a proof via calibrations, Ann. Mat. Pura Appl. (4) 199 (2020), no. 4, 1685–1696.

G. Saracco and G. Stefani, On the monotonicity of weighted perimeters of convex bodies, Math. Nachr. (2023), 1–7.

R. Schneider, Convex Bodies: the Brunn–Minkowski Theory, expanded edition, Encyclopedia of Mathematics and its Applications, vol. 151, Cambridge University Press, Cambridge, 2014.

G. Stefani, On the monotonicity of perimeter of convex bodies, J. Convex Anal. 25 (2018), no. 1, 93–102.

Downloads

  • PREVIEW
  • FULL TEXT

Published

2024-09-25

How to Cite

1.
GIANNETTI, Flavia and STEFANI, Giorgio. On the monotonicity of non-local perimeter of convex bodies. Topological Methods in Nonlinear Analysis. Online. 25 September 2024. Vol. 64, no. 2, pp. 693 - 710. [Accessed 27 December 2025]. DOI 10.12775/TMNA.2024.019.
  • ISO 690
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

Vol 64, No 2 (December 2024)

Section

Articles

License

Copyright (c) 2024 Flavia Giannetti, Giorgio Stefani

Creative Commons License

This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.

Stats

Number of views and downloads: 0
Number of citations: 0

Search

Search

Browse

  • Browse Author Index
  • Issue archive

User

User

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo

Newsletter

Subscribe Unsubscribe
Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop