Existence of eigenvalues for anisotropic and fractional anisotropic problems via Ljusternik-Schnirelmann Theory
DOI:
https://doi.org/10.12775/TMNA.2024.001Keywords
Eigenvalues, mixed Lebesgue, anisotropic Sobolev spaces, Lusternik-SchnirelmannAbstract
In this work, our interest lies in proving the existence of critical values of the following Rayleigh-type quotients $$ \Q_{\p}(u) = \frac{\|\nabla u\|_{\p}}{\|u\|_{\p}} \quad\text{and}\quad \Q_{\s,\p}(u) = \frac{[u]_{\s,\p}}{\|u\|_{\p}}, $$% where $\p = (p_1,\dots,p_n)$, $\s=(s_1,\dots,s_n)$ and $$ \|\nabla u\|_{\p} = \sum_{i=1}^n \|u_{x_i}\|_{p_i} $$% is an anisotropic Sobolev norm, $[u]_{\s,\p}$ is a fractional version of the same anisotropic norm, and $$ \|u\|_{\p} =\bigg(\int_{\R}\bigg(\dots \bigg(\int_{\R}|u|^{p_1}dx_1\bigg)^{{p_2}/{p_1}}dx_2\dots \bigg)^{p_n/p_{n-1}}dx_n\bigg)^{1/p_n} $$% is an anisotropic Lebesgue norm. Using the Lusternik-Schnirelmann theory, we prove the existence of a sequence of critical values and we also find an associated Euler-Lagrange equation for critical points. Additionally, we analyze the connection between the fractional critical values and its local counterparts.References
R.A. Adams, Anisotropic Sobolev inequalities, Časopis Pro Pěstovánı́ Matematiky 113 (1988), no. 3, 267–279, http://eudml.org/doc/19616.
M. Belloni and B. Kawohl, The pseudo-p-Laplace eigenvalue problem and viscosity solutions as p → ∞, ESAIM Control Optim. Calc. Var. 10 (2004), no. 1, 28–52, DOI: 10.1051/cocv:2003035.
A. Benedek and R. Panzone, The space LP with mixed norm, Duke Math. J. 28 (1961), no. 3, DOI: 10.1215/s0012-7094-61-02828-9.
J.F. Bonder and J.D. Rossi, A nonlinear eigenvalue problem with indefinite weights related to the Sobolev trace embedding, Publ. Mat. 46 (2002), no. 1, 221–235, DOI: 10.5565/PUBLMAT 46102 12.
J.F. Bonder, A. Salort and H. Vivas, Homogeneous eigenvalue problems in Orlicz–Sobolev spaces, arXiv preprint, arXiv: 2205.09621, May 2022, DOI: 10.48550/arXiv.2205.09621.
H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equations, Universitext, Springer, New York, 2011, pp. xiv+599, DOI: 10.1007/978-0-387-70913-0.
L. Caffarelli and L. Silvestre, An extension problem related to the fractional Laplacian, Comm. Partial Differential Equations 32 (2007), no. 7–9, 1245–1260, DOI: 10.1080/03605300600987306.
I. Ceresa Dussel and J. Fernández Bonder, A Bourgain–Brezis–Mironescu formula
anisotropic fractional Sobolev spaces and applications to anisotropic fractional differential equations, J. Math. Anal. Appl. 519 (2023), no. 2, paper no. 126805, 25, DOI: 10.1016/j.jmaa.2022.126805.
J. Chaker, M. Kim and M. Weidner, The concentration-compactness principle for the nonlocal anisotropic p-Laplacian of mixed order, Nonlinear Anal. 232 (2023), paper no. 113254, 18, DOI: 10.1016/j.na.2023.113254.
K.R. Chernyshov, The Anisotropic Norm of Signals: Towards Possible Definitions, 17th IFAC Workshop on Control Applications of Optimization CAO 2018, IFAC-PapersOnLine, 51 (2018), no. 32, 169–174, DOI: 10.1016/j.ifacol.2018.11.375.
A. Córdoba and D. Córdoba, A maximum principle applied to quasi-geostrophic equations, Comm. Math. Phys. 249 (2004), no. 3, 511–528, DOI: 10.1007/s00220-004-1055-1.
E. Di Nezza, G. Palatucci and E Valdinoci, Hitchhiker’s guide to the fractional Sobolev spaces, Bull. Sci. Math. 136 (2012), no. 5, 521–573, DOI: 10.1016/j.bulsci.2011.12.004.
A. El Hamidi and J.M. Rakotoson, Extremal functions for the anisotropic Sobolev inequalities, Ann. Inst. H. Poincaré Anal. Non Linéaire 24 (2007), no. 5, 741–756, DOI: 10.1016/j.anihpc.2006.06.003.
G. Franzina and P. Lindqvist, An eigenvalue problem with variable exponents, Nonlinear Anal. 85 (2013), 1–16, DOI: 10.1016/j.na.2013.02.011.
G. Franzina and G. Palatucci, Fractional p-eigenvalues, Riv. Math. Univ. Parma (N.S.) 5 (2014), no. 2, 373–386.
P. Gonçalves, Hydrodynamics for symmetric exclusion in contact with reservoirs, Stochastic Dynamics out of Equilibrium, Springer Proc. Math. Stat. 282 (2019), 137–205, DOI: 10.1007/978-3-030-15096-9 4.
A. Le, Eigenvalue problems for the p-Laplacian, Nonlinear Anal. 64 (2006), no. 5, 1057–1099, DOI: 10.1016/j.na.2005.05.056.
D. Motreanu, V.V. Motreanu and N. Papageorgiou, Topological and Variational Methods with Applications to Nonlinear Boundary Value Problems, Springer, New York, 2014, DOI: 10.1007/978-1-4614-9323-5.
J. Rákosnı́k, Some remarks to anisotropic Sobolev spaces. I, Beiträge Anal. 13 (1979), 55–68.
J. Rákosnı́k, Some remarks to anisotropic Sobolev spaces. II, Beiträge Anal. 15 (1981), 127–140, DOI: 10.1007/BF01208420.
A.P. Riascos and J.L. Mateos, Fractional diffusion on circulant networks: emergence of a dynamical small world, J. Stat. Mech. Theory Exp. 2015 (2015), no. 7, P07015, 26, DOI: 10.1088/1742-5468/2015/07/p07015.
R. Servadei and E. Valdinoci, Variational methods for non-local operators of elliptic type, Discrete Contin. Dyn. Syst. 33 (2013), no. 5, 2105–2137, DOI: 10.3934/dcds.2013.33.2105.
M. Troisi, Teoremi di inclusione per spazi di Sobolev non isotropi, Ricerche Mat. 18 (1969), 3–24.
C. Tsiotsios and M. Petrou, On the choice of the parameters for anisotropic diffusion in image processing, Pattern Recognition 46 (2013), no. 5, 1369–1381, DOI: 10.1016/j.patcog.2012.11.012.
E. Zeidler, Nonlinear Functional Analysis and its Applications. III, Variational Methods and Optimization, Springer–Verlag, New York, 1985, DOI: 10.1007/978-1-4612-5020-3.
Published
How to Cite
Issue
Section
Stats
Number of views and downloads: 0
Number of citations: 0