Skip to main content Skip to main navigation menu Skip to site footer
  • Login
  • Language
    • English
    • Język Polski
  • Menu
  • Home
  • Current
  • Online First
  • Archives
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  • Login
  • Language:
  • English
  • Język Polski

Topological Methods in Nonlinear Analysis

Positive solution of quasilinear elliptic equations in $\mathbb{R}^N$ with a bounded quasilinearity
  • Home
  • /
  • Positive solution of quasilinear elliptic equations in $\mathbb{R}^N$ with a bounded quasilinearity
  1. Home /
  2. Archives /
  3. Vol 64, No 2 (December 2024) /
  4. Articles

Positive solution of quasilinear elliptic equations in $\mathbb{R}^N$ with a bounded quasilinearity

Authors

  • Maomao Wu https://orcid.org/0000-0001-6453-2872
  • Haidong Liu

DOI:

https://doi.org/10.12775/TMNA.2023.065

Keywords

Quasilinear elliptic equation, bounded quasilinearity, variational methods

Abstract

Consider the quasilinear elliptic equation $$ -\text{div}(\mathcal{A}(u)\nabla u) +\frac{1}{2}\mathcal{A}'(u)|\nabla u|^2+V(x)u =(I_{\alpha}\ast |u|^p) |u|^{p-2}u\quad \text{in } \R^N, $$% where $\mathcal{A}\in C^1(\R,\R)$ is a positive bounded function, $V$ is a given potential and $I_\alpha$ denotes the Riesz potential with $0< \alpha< N$. While most existing works in the literature are concerned with the case where $\mathcal{A}$ is unbounded, little is known about the case where $\mathcal{A}$ is bounded. Under some general conditions on $\mathcal{A}$ and $V$, we establish the existence of a positive solution for the above equation by variational approach.

References

C. Alves, A. Nóbrega and M. Yang, Multi-bump solutions for Choquard equation with deepening potential well, Calc. Var. Partial Differential Equations 55 (2016), 48.

C. Alves, Y. Wang and Y. Shen, Soliton solutions for a class of quasilinear Schrödinger equations with a parameter, J. Differential Equations 259 (2015), 318–343.

T. Bartsch and Z.-Q. Wang, Existence and multiplicity results for some superlinear elliptic problems on RN , Comm. Partial Differential Equations 20 (1995), 1725–1741.

F. Bass and N. Nasonov, Nonlinear electromagnetic-spin waves, Phys. Rep. 189 (1990), 165–223.

H. Berestycki and P.-L. Lions, Nonlinear scalar field equations, I. Existence of a ground state, Arch. Ration. Mech. Anal. 82 (1983), 313–345.

H. Berestycki and P-L. Lions, Nonlinear scalar field equations, II. Existence of infinitely many solutions, Arch. Ration. Mech. Anal. 82 (1983), 347–375.

S. Chen and X. Wu, Existence of positive solutions for a class of quasilinear Schrödinger equations of Choquard type, J. Math. Anal. Appl. 475 (2019), 1754–1777.

X. Chen and R. Sudan, Necessary and sufficient conditions for self-focusing of short ultraintense laser pulse in underdense plasma, Phys. Rev. Lett. 70 (1993), 2082–2085.

C. Chu and H. Liu, Existence of positive solutions for a quasilinear Schrödinger equation, Nonlinear Anal. Real World Appl. 44 (2018), 118–127.

M. Colin and L. Jeanjean, Solutions for a quasilinear Schrödinger equation: a dual approach, Nonlinear Anal. 56 (2004), 213–226.

A. de Bouard, N. Hayashi and J.-C. Saut, Global existence of small solutions to a relativistic nonlinear Schrödinger equation, Comm. Math. Phys. 189 (1997), 73–105.

Y. Deng and W. Huang, Positive ground state solutions for a quasilinear elliptic equation with critical exponent, Discrete Contin. Dyn. Syst. 37 (2017), 4213–4230.

I. Ekeland, Convexity Methods in Hamiltonian Mechanics, Springer–Verlag, Berlin, 1990.

A. Floer and A. Weinstein, Nonspreading wave packets for the cubic Schrödinger equation with a bounded potential, J. Funct. Anal. 69 (1986), 397–408.

M. Ghimenti and J. Van Schaftingen, Nodal solutions for the Choquard equation, J. Funct. Anal. 271 (2016), 107–135.

R. Hasse, A general method for the solution of nonlinear soliton and kink Schrödinger equations, Z. Phys. B 37 (1980), 83–87.

L. Jeanjean and K. Tanaka, A remark on least energy solutions in RN , Proc. Amer. Math. Soc. 131 (2003), 2399–2408.

Y. Jing and H. Liu, Sign-changing solutions for a modified nonlinear Schrödinger equation in RN , Calc. Var. Partial Differential Equations 61 (2022), 144.

Y. Jing, H. Liu and Z. Liu, Quasilinear Schrödinger equations involving singular potentials, Nonlinearity 35 (2022), 1810–1856.

Y. Jing, H. Liu and Z. Zhang, Quaslinear Schrödinger equations with bounded coefficients, Nonlinearity 35 (2022), 4939–4985.

Y. Jing, Z. Liu and Z.-Q. Wang, Multiple solutions of a parameter-dependent quasilinear elliptic equation, Calc. Var. Partial Differential Equations 55 (2016), 150.

S. Kurihara, Large-amplitude quasi-solitons in superfluid films, J. Phys. Soc. Japan 50 (1981), 3262–3267.

X. Li and S. Ma, Choquard equation with critical nonlinearities, Comm. Contemp. Math. 22 (2020), 1950023.

E. Lieb, Existence and uniqueness of the minimizing solution of Choquard’s nonlinear equation, Stud. Appl. Math. 57 (1977), 93–105.

E. Lieb and M. Loss, Analysis, Graduate Studies in Mathematics, AMS, Providence, RI, 2001.

P.-L. Lions, The concentration-compactness principle in the calculus of variations. The locally compact case, II, Ann. Inst. H. Poincaré Anal. Non Linéaire 1 (1984), 223–283.

J. Liu, Y. Wang and Z.-Q. Wang, Soliton solutions for quasilinear Schrödinger equations, II, J. Differential Equations 187 (2003), 473–493.

J. Liu, Y. Wang and Z.-Q. Wang, Solutions for quasilinear Schrödinger equations via the Nehari method, Comm. Partial Differential Equations 29 (2004), 879–901.

J. Liu and Z.-Q. Wang, Soliton solutions for quasilinear Schrödinger equations, I, Proc. Amer. Math. Soc. 131 (2003), 441–448.

J. Liu and Z.-Q. Wang, Multiple solutions for quasilinear elliptic equations with a finite potential well, J. Differential Equations 257 (2014), 2874–2899.

X. Liu, J. Liu and Z.-Q. Wang, Quasilinear elliptic equations via perturbation method, Proc. Amer. Math. Soc. 141 (2013), 253–263.

V. Makhankov and V. Fedyanin, Non-linear effects in quasi-one-dimensional models of condensed matter theory, Phys. Rep. 104 (1984), 1–86.

V. Moroz and J. Van Schaftingen, Groundstates of nonlinear Choquard equations: existence, qualitative properties and decay asymptotics, J. Funct. Anal. 265 (2013), 153–184.

V. Moroz and J. Van Schaftingen, Existence of groundstates for a class of nonlinear Choquard equations, Trans. Amer. Math. Soc. 367 (2015), 6557–6579.

S. Pekar, Untersuchungen über die Elektronentheorie der Kristalle, Akademie–Verlag, Berlin, 1954.

M. Poppenberg, K. Schmitt and Z.-Q. Wang, On the existence of soliton solutions to quasilinear Schrödinger equations, Calc. Var. Partial Differential Equations 14 (2002), 329–344.

P. Rabinowitz, On a class of nonlinear Schrödinger equations, Z. Angew. Math. Phys. 43 (1992), 270–291.

B. Ritchie, Relativistic self-focusing and channel formation in laser-plasma interactions, Phys. Rev. E 50 (1994), 687–689.

D. Ruiz and G. Siciliano, Existence of ground states for a modified nonlinear Schrödinger equation, Nonlinearity 23 (2010), 1221–1233.

U. Severo, E. Gloss and E. da Silva, On a class of quasilinear Schrödinger equations with superlinear or asymptotically linear terms, J. Differential Equations 263 (2017), 3550–3580.

N. Soave, Normalized ground states for the NLS equation with combined nonlinearities: the Sobolev critical case, J. Funct. Anal. 279 (2020), 108610.

W. Strauss, Existence of solitary waves in higher dimensions, Comm. Math. Phys. 55 (1977), 149–162.

Downloads

  • PREVIEW
  • FULL TEXT

Published

2024-09-25

How to Cite

1.
WU, Maomao and LIU, Haidong. Positive solution of quasilinear elliptic equations in $\mathbb{R}^N$ with a bounded quasilinearity. Topological Methods in Nonlinear Analysis. Online. 25 September 2024. Vol. 64, no. 2, pp. 675 - 692. [Accessed 6 July 2025]. DOI 10.12775/TMNA.2023.065.
  • ISO 690
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

Vol 64, No 2 (December 2024)

Section

Articles

License

Copyright (c) 2024 Maomao Wu, Haidong Liu

Creative Commons License

This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.

Stats

Number of views and downloads: 0
Number of citations: 0

Search

Search

Browse

  • Browse Author Index
  • Issue archive

User

User

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo

Newsletter

Subscribe Unsubscribe
Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop