Skip to main content Skip to main navigation menu Skip to site footer
  • Login
  • Language
    • English
    • Język Polski
  • Menu
  • Home
  • Current
  • Online First
  • Archives
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  • Login
  • Language:
  • English
  • Język Polski

Topological Methods in Nonlinear Analysis

Hopf bifurcation and stability analysis for a delayed equation with φ-Laplacian
  • Home
  • /
  • Hopf bifurcation and stability analysis for a delayed equation with φ-Laplacian
  1. Home /
  2. Archives /
  3. Vol 64, No 2 (December 2024) /
  4. Articles

Hopf bifurcation and stability analysis for a delayed equation with φ-Laplacian

Authors

  • Pablo Amster https://orcid.org/0000-0003-2829-7072
  • Mariel P. Kuna https://orcid.org/0000-0001-6466-973X
  • Dionicio Santos https://orcid.org/0000-0001-5574-6254

DOI:

https://doi.org/10.12775/TMNA.2024.015

Keywords

Functional-delay equations, Lyapunov-Krasovskii functional, stability, Hopf bifurcation, periodic solutions

Abstract

A formal framework for the analysis of Hopf bifurcations for a kind of delayed equation with $\varphi$-Laplacian and with a discrete time delay is presented, thus generalizing known results for the sunflower equation given by Somolinos in 1978. Also, under appropriate assumptions we prove the gradient-like behavior of the equation which, in turn, implies the non-existence of nonconstant periodic solutions. Our conditions improve previous results known in the literature for the standard case $\varphi(x)=x$.

References

P. Amster, M.P. Kuna and D.P. Santos, Stability, existence and non-existence of T periodic solutions of nonlinear delayed differential equations with ϕ-Laplacian, Comm. Pure Appl. Anal. 21 (2022), no. 8, 2723–2737, DOI: 10.3934/cpaa.2022070.

C. Bereanu and J. Mawhin, Existence and multiplicity results for some nonlinear problems with singular ϕ-Laplacian, J. Differential Equations. 243 (2007), 536–557.

T.A. Burton, Stability and Periodic Solution of Ordinary and Functional Differential Equations, Academic Press, Orland, FL, 1985.

T.A. Burton and L. Hatvani, Stability Theorems for non autonomous functional differential equations by Liapunov functionals, Tohoku Math. J. 41 (1989), 65–104.

J. Hale, Theory of Functional Differential Equations, Springer–Verlag, New York, Heidelberg, Berlin, 1977.

X. Huang and Z. Xiang, On existence of 2π-periodic solutions for delay Duffing equation x00 + g(t, x(t − τ (t))) = p(t), Chinese Sci. Bull. 39 (1994), 201–203.

X. Liu, M. Tang and R. Martin, Periodic solutions for a kind of Liénard equation, J. Comput. Appl. Math. 219 (2008), 263–275.

S. Lu and W. Ge, Periodic solutions for a kind of second order differential equation with multiple deviating arguments, Appl. Math. Comput. 146 (2003), 195–209.

S. Lu and W. Ge, Sufficient conditions for the existence of periodic solutions to some second order differential equations with a deviating argument, Appl. Math. Comput. 308 (2005), 393–419.

V. Smirnova, A. Proskurnikov and I. Zgoda, The sunflower equation: novel stability criteria IFAC-PapersOnLine 54 (2021), issue 17, 135–140.

A. Somolinos, Periodic solutions of the sunflower equation: ẍ + (a/r)ẋ + (b/r) sin x(t − r) = 0, Quart. Appl. Math. 35 (1978), 465–478.

A. Somolinos, Forced oscillations for the sunflower equation, entrainment, Nonlinear Anal. 4 (1982), 397–414.

G. Stépán, Retarded Dynamical Systems: Stability and Characteristic Functions, John Wiley, New York, 1989.

Downloads

  • PREVIEW
  • FULL TEXT

Published

2024-09-21

How to Cite

1.
AMSTER, Pablo, KUNA, Mariel P. and SANTOS, Dionicio. Hopf bifurcation and stability analysis for a delayed equation with φ-Laplacian. Topological Methods in Nonlinear Analysis. Online. 21 September 2024. Vol. 64, no. 2, pp. 545 - 559. [Accessed 16 May 2025]. DOI 10.12775/TMNA.2024.015.
  • ISO 690
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

Vol 64, No 2 (December 2024)

Section

Articles

License

Copyright (c) 2024 Pablo Amster, Mariel P. Kuna, Dionicio Santos

Creative Commons License

This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.

Stats

Number of views and downloads: 0
Number of citations: 0

Search

Search

Browse

  • Browse Author Index
  • Issue archive

User

User

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo

Newsletter

Subscribe Unsubscribe
Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop