Existence of positive solutions for generalized fractional Brézis-Nirenberg problem
DOI:
https://doi.org/10.12775/TMNA.2024.014Keywords
Fractional Brézis-Nirenberg problem, critical Sobolev exponent, concentration compactness, principle of symmetric criticality, positive solutionsAbstract
In this article, we study the fractional Brézis-Nirenberg type problem on whole domain $\R^N$ associated with the fractional $p$-Laplace operator. To be precise, we want to study the following problem: \begin{equation} \label{Pr1} (-\Delta_{p})^{s}u - \lambda w |u|^{p-2}u= |u|^{p_{s}^{*}-2}u \quad \text{in } \mathcal{D}^{s,p}\big(\mathbb{R}^{N}\big) , \tag{P} \end{equation} where $s\in (0,1), p\in (1, {N}/{s})$, $p_{s}^{*}={Np}/({N-sp})$ and the operator $(-\Delta_{p})^{s}$ is the fractional $p$-Laplace operator. The space $\mathcal{D}^{s,p}\big(\mathbb{R}^{N}\big)$ is the completion of $C_c^\infty\big(\R^N\big)$ with respect to the Gagliardo semi-norm. In this article, we prove the existence of a positive solution to problem \eqref{Pr1} by allowing the Hardy weight function $w$ to change its sign.References
C.D. Aliprantis and K.C. Border, Infinite Dimensional Analysis, Springer, Berlin, third edition, 2006. A hitchhiker’s guide.
T.V. Anoop and U. Das, On the generalised Brézis–Nirenberg problem, NoDEA Nonlinear Differential Equations Appl. 30 (2023), no. 1, paper no. 4.
J.F. Bonder, N. Saintier and A. Silva, The concentration-compactness principle for fractional order Sobolev spaces in unbounded domains and applications to the generalized fractional Brézis–Nirenberg problem, NoDEA Nonlinear Differential Equations Appl. 25 (2018), no. 6, paper no. 52, 25 pp.
L. Brasco, D. Gómez-Castro and J. L. Vázquez, Characterisation of homogeneous fractional Sobolev spaces, Calc. Var. Partial Differential Equations 60 (2021), no. 2, paper no. 60, 40 pp.
L. Brasco, S. Mosconi and M. Squassina, Optimal decay of extremals for the fractional Sobolev inequality, Calc. Var. Partial Differential Equations 55 (2016), no. 2, art. 23, 32 pp.
L. Brasco and M. Squassina, Optimal solvability for a nonlocal problem at critical growth, J. Differential Equations 264 (2018), no. 3, 2242–2269.
H. Brézis and E. Lieb, A relation between pointwise convergence of functions and convergence of functionals, Proc. Amer. Math. Soc. 88 (1983), no. 3, 486–490.
W. Chen, C. Li and B. Ou, Classification of solutions for an integral equation, Comm. Pure Appl. Math. 59 (2006), no. 3, 330–343.
W. Chen, S. Mosconi and M. Squassina, Nonlocal problems with critical Hardy nonlinearity, J. Funct. Anal. 275 (2018), no. 11, 3065–3114.
J.B. Conway, A Course in Functional Analysis, Graduate Texts in Mathematics, vol. 96, Springer–Verlag, New York, second edition, 1990.
N. Cui and H.-R. Sun, Existence of solutions for critical fractional p-Laplacian equations with indefinite weights, Electron. J. Differential Equations (2021), paper no. 11, 17 pp.
U. Das, R. Kumar and A. Sarkar, Characterizations of compactness and weighted eigenvalue problem for fractional p-Laplacian in Rn (2023), DOI: 10.48550/arXiv.2309.09532. (submitted)
L.M. Del Pezzo and A. Quaas, A Hopf ’s lemma and a strong minimum principle for the fractional p-Laplacian, J. Differential Equations 263 (2017), no. 1, 765–778.
E. Di Nezza, G. Palatucci and E. Valdinoci, Hitchhiker’s guide to the fractional Sobolev spaces Bull. Sci. Math. 136 (2012), no. 5, 521–573.
S. Dipierro, L. Montoro, I. Peral and B. Sciunzi, Qualitative properties of positive solutions to nonlocal critical problems involving the Hardy–Leray potential, Calc. Var. Partial Differential Equations 55 (2016), no. 4, Art. 99, 29 pp.
H. Federer, Geometric measure theory. Die Grundlehren der mathematischen Wissenschaften, Band 153. Springer-Verlag New York Inc., New York, 1969.
G.B. Folland, Real Analysis: Modern Techniques and their Applications, vol. 40, John Wiley & Sons, 1999.
R.L. Frank and R. Seiringer, Non-linear ground state representations and sharp Hardy inequalities, J. Funct. Anal. 255 (2008), no. 12, 3407–3430.
V. Hernández-Santamarı́a and A. Saldaña, Existence and convergence of solutions to fractional pure critical exponent problems, Adv. Nonlinear Stud. 21 (2021), no. 4, 827–854.
J. Kobayashi and M. Ôtani, The principle of symmetric criticality for non-differentiable mappings, J. Funct. Anal. 214 (2004), no. 2, 428–449.
A. Kristály, C. Varga and V. Varga, A nonsmooth principle of symmetric criticality and variational-hemivariational inequalities, J. Math. Anal. Appl. 325 (2007), no. 2, 975–986.
N. Li and X.-m. He, Positive solutions for a class of fractional p-Laplacian equation with critical Sobolev exponent and decaying potentials, Acta Math. Appl. Sin. (Engl. Ser.) 38 (2022), no. 2, 463–483.
P.-L. Lions, The concentration-compactness principle in the calculus of variations. The limit case I and II, Rev. Mat. Iberoam. 1 (1985), no. 1, 45–121, 145–201.
S. Mosconi, K. Perera, M. Squassina and Y. Yang, The Brézis–Nirenberg problem for the fractional p-Laplacian, Calc. Var. Partial Differential Equations 55 (2016), no. 4, Art. 105, 25 pp.
R.S. Palais, The principle of symmetric criticality, Comm. Math. Phys. 69 (1979), no. 1, 19–30.
F. Rindler, Calculus of Variations, Universitext, Springer, Cham, 2018.
R. Servadei and E. Valdinoci, The Brézis–Nirenberg result for the fractional Laplacian, Trans. Amer. Math. Soc. 367 (2015), no1̇, 67–102.
C. Zhang, P. Ma and T. Zheng, Entire sign-changing solutions to the fractional pLaplacian equation involving critical nonlinearity, Nonlinear Anal. 235 (2023), paper no. 113346.
Published
How to Cite
Issue
Section
Stats
Number of views and downloads: 0
Number of citations: 0