Skip to main content Skip to main navigation menu Skip to site footer
  • Login
  • Language
    • English
    • Język Polski
  • Menu
  • Home
  • Current
  • Online First
  • Archives
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  • Login
  • Language:
  • English
  • Język Polski

Topological Methods in Nonlinear Analysis

Existence of positive solutions for generalized fractional Brézis-Nirenberg problem
  • Home
  • /
  • Existence of positive solutions for generalized fractional Brézis-Nirenberg problem
  1. Home /
  2. Archives /
  3. Vol 64, No 2 (December 2024) /
  4. Articles

Existence of positive solutions for generalized fractional Brézis-Nirenberg problem

Authors

  • Rohit Kumar https://orcid.org/0009-0001-6494-6407
  • Abhishek Sarkar https://orcid.org/0000-0002-9097-7784

DOI:

https://doi.org/10.12775/TMNA.2024.014

Keywords

Fractional Brézis-Nirenberg problem, critical Sobolev exponent, concentration compactness, principle of symmetric criticality, positive solutions

Abstract

In this article, we study the fractional Brézis-Nirenberg type problem on whole domain $\R^N$ associated with the fractional $p$-Laplace operator. To be precise, we want to study the following problem: \begin{equation} \label{Pr1} (-\Delta_{p})^{s}u - \lambda w |u|^{p-2}u= |u|^{p_{s}^{*}-2}u \quad \text{in } \mathcal{D}^{s,p}\big(\mathbb{R}^{N}\big) , \tag{P} \end{equation} where $s\in (0,1), p\in (1, {N}/{s})$, $p_{s}^{*}={Np}/({N-sp})$ and the operator $(-\Delta_{p})^{s}$ is the fractional $p$-Laplace operator. The space $\mathcal{D}^{s,p}\big(\mathbb{R}^{N}\big)$ is the completion of $C_c^\infty\big(\R^N\big)$ with respect to the Gagliardo semi-norm. In this article, we prove the existence of a positive solution to problem \eqref{Pr1} by allowing the Hardy weight function $w$ to change its sign.

References

C.D. Aliprantis and K.C. Border, Infinite Dimensional Analysis, Springer, Berlin, third edition, 2006. A hitchhiker’s guide.

T.V. Anoop and U. Das, On the generalised Brézis–Nirenberg problem, NoDEA Nonlinear Differential Equations Appl. 30 (2023), no. 1, paper no. 4.

J.F. Bonder, N. Saintier and A. Silva, The concentration-compactness principle for fractional order Sobolev spaces in unbounded domains and applications to the generalized fractional Brézis–Nirenberg problem, NoDEA Nonlinear Differential Equations Appl. 25 (2018), no. 6, paper no. 52, 25 pp.

L. Brasco, D. Gómez-Castro and J. L. Vázquez, Characterisation of homogeneous fractional Sobolev spaces, Calc. Var. Partial Differential Equations 60 (2021), no. 2, paper no. 60, 40 pp.

L. Brasco, S. Mosconi and M. Squassina, Optimal decay of extremals for the fractional Sobolev inequality, Calc. Var. Partial Differential Equations 55 (2016), no. 2, art. 23, 32 pp.

L. Brasco and M. Squassina, Optimal solvability for a nonlocal problem at critical growth, J. Differential Equations 264 (2018), no. 3, 2242–2269.

H. Brézis and E. Lieb, A relation between pointwise convergence of functions and convergence of functionals, Proc. Amer. Math. Soc. 88 (1983), no. 3, 486–490.

W. Chen, C. Li and B. Ou, Classification of solutions for an integral equation, Comm. Pure Appl. Math. 59 (2006), no. 3, 330–343.

W. Chen, S. Mosconi and M. Squassina, Nonlocal problems with critical Hardy nonlinearity, J. Funct. Anal. 275 (2018), no. 11, 3065–3114.

J.B. Conway, A Course in Functional Analysis, Graduate Texts in Mathematics, vol. 96, Springer–Verlag, New York, second edition, 1990.

N. Cui and H.-R. Sun, Existence of solutions for critical fractional p-Laplacian equations with indefinite weights, Electron. J. Differential Equations (2021), paper no. 11, 17 pp.

U. Das, R. Kumar and A. Sarkar, Characterizations of compactness and weighted eigenvalue problem for fractional p-Laplacian in Rn (2023), DOI: 10.48550/arXiv.2309.09532. (submitted)

L.M. Del Pezzo and A. Quaas, A Hopf ’s lemma and a strong minimum principle for the fractional p-Laplacian, J. Differential Equations 263 (2017), no. 1, 765–778.

E. Di Nezza, G. Palatucci and E. Valdinoci, Hitchhiker’s guide to the fractional Sobolev spaces Bull. Sci. Math. 136 (2012), no. 5, 521–573.

S. Dipierro, L. Montoro, I. Peral and B. Sciunzi, Qualitative properties of positive solutions to nonlocal critical problems involving the Hardy–Leray potential, Calc. Var. Partial Differential Equations 55 (2016), no. 4, Art. 99, 29 pp.

H. Federer, Geometric measure theory. Die Grundlehren der mathematischen Wissenschaften, Band 153. Springer-Verlag New York Inc., New York, 1969.

G.B. Folland, Real Analysis: Modern Techniques and their Applications, vol. 40, John Wiley & Sons, 1999.

R.L. Frank and R. Seiringer, Non-linear ground state representations and sharp Hardy inequalities, J. Funct. Anal. 255 (2008), no. 12, 3407–3430.

V. Hernández-Santamarı́a and A. Saldaña, Existence and convergence of solutions to fractional pure critical exponent problems, Adv. Nonlinear Stud. 21 (2021), no. 4, 827–854.

J. Kobayashi and M. Ôtani, The principle of symmetric criticality for non-differentiable mappings, J. Funct. Anal. 214 (2004), no. 2, 428–449.

A. Kristály, C. Varga and V. Varga, A nonsmooth principle of symmetric criticality and variational-hemivariational inequalities, J. Math. Anal. Appl. 325 (2007), no. 2, 975–986.

N. Li and X.-m. He, Positive solutions for a class of fractional p-Laplacian equation with critical Sobolev exponent and decaying potentials, Acta Math. Appl. Sin. (Engl. Ser.) 38 (2022), no. 2, 463–483.

P.-L. Lions, The concentration-compactness principle in the calculus of variations. The limit case I and II, Rev. Mat. Iberoam. 1 (1985), no. 1, 45–121, 145–201.

S. Mosconi, K. Perera, M. Squassina and Y. Yang, The Brézis–Nirenberg problem for the fractional p-Laplacian, Calc. Var. Partial Differential Equations 55 (2016), no. 4, Art. 105, 25 pp.

R.S. Palais, The principle of symmetric criticality, Comm. Math. Phys. 69 (1979), no. 1, 19–30.

F. Rindler, Calculus of Variations, Universitext, Springer, Cham, 2018.

R. Servadei and E. Valdinoci, The Brézis–Nirenberg result for the fractional Laplacian, Trans. Amer. Math. Soc. 367 (2015), no1̇, 67–102.

C. Zhang, P. Ma and T. Zheng, Entire sign-changing solutions to the fractional pLaplacian equation involving critical nonlinearity, Nonlinear Anal. 235 (2023), paper no. 113346.

Downloads

  • PREVIEW
  • FULL TEXT

Published

2024-09-21

How to Cite

1.
KUMAR, Rohit and SARKAR, Abhishek. Existence of positive solutions for generalized fractional Brézis-Nirenberg problem. Topological Methods in Nonlinear Analysis. Online. 21 September 2024. Vol. 64, no. 2, pp. 509 - 543. [Accessed 27 December 2025]. DOI 10.12775/TMNA.2024.014.
  • ISO 690
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

Vol 64, No 2 (December 2024)

Section

Articles

License

Copyright (c) 2024 Rohit Kumar, Abhishek Sarkar

Creative Commons License

This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.

Stats

Number of views and downloads: 0
Number of citations: 0

Search

Search

Browse

  • Browse Author Index
  • Issue archive

User

User

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo

Newsletter

Subscribe Unsubscribe
Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop