Skip to main content Skip to main navigation menu Skip to site footer
  • Login
  • Language
    • English
    • Język Polski
  • Menu
  • Home
  • Current
  • Online First
  • Archives
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  • Login
  • Language:
  • English
  • Język Polski

Topological Methods in Nonlinear Analysis

Infinitely many positive solutions for a double phase problems involving the double phase operator
  • Home
  • /
  • Infinitely many positive solutions for a double phase problems involving the double phase operator
  1. Home /
  2. Archives /
  3. Vol 64, No 2 (December 2024) /
  4. Articles

Infinitely many positive solutions for a double phase problems involving the double phase operator

Authors

  • Chunbo Lian https://orcid.org/0009-0002-1974-1856
  • Bin Ge https://orcid.org/0000-0001-7246-729X
  • Qinghai Cao https://orcid.org/0009-0004-2335-6568
  • Yu Zhang https://orcid.org/0009-0000-5097-1188

DOI:

https://doi.org/10.12775/TMNA.2024.013

Keywords

Double phase operator, oscillatory nonlinearities, infinitely many positive solutions, variational principle

Abstract

In this paper we study a double phase problem which involves the double phase operator, and the nonlinear term has an oscillatory behavior. By using variational methods and the theory of the Musielak-Orlicz-Sobolev space, we establish the existence of infinitely many solutions whose $W_0^{1,H}(\Omega)$-norms tend to zero (to infinity, respectively) whenever the nonlinearity oscillates at zero (at infinity, respectively).

References

A. Benkirane and M. Sidi El Vally, Variational inequalities in Musielak–Orlicz–Sobolev spaces, Bull. Belg. Math. Soc. Simon Stevin 21 (2014), 787–811.

M. Cencelj, V.D. Radulescu and D.D. Repovs, Double phase problems with variable growth, Nonlinear Anal. 177 (2018), 270–287.

F. Colasuonno and M. Squassina, Eigenvalues for double phase variational integrals, Ann. Mat. Pura Appl. 195 (2016), 1917–1959.

A. Crespo-Blanco, L. Gasinski, P. Harjulehto and P. Winkert, Anewclass of double phase variable exponent problems: existence and uniqueness, J. Differential Equations 323 (2022), 182–228.

G. Cuesta and G. Figueiredo, Existence and concentration of positive solutions for a critical p&q equation, Adv. Nonlinear Anal. 11 (2022), 243–267.

X. Fan and C.X. Guan, Uniform convexity of Musielak–Orlicz–Sobolev spaces and applications, Nonlinear Anal. 73 (2010), 163–175.

B. Ge and Z.Y. Chen, Existence of infinitely many solutions for double phase problem with sign-changing potential, Rev. R. Acad. Cienc. Exactas Fis. Nat. Ser. A Mat. RACSAM. 113 (2019), 3185–3196.

B. Ge, D.L. Lv and J.F. Lu, Multiple solutions for a class of double phase problem without the Ambrosetti–Rabinowitz conditions, Nonlinear Anal. 188 (2019), 294–315.

B. Ge, L.Y. Wang and J.F. Lu, On a class of double-phase problem without Ambrosetti–Robinowitz-type conditions, Appl. Anal. 100 (2021), 2147–2162.

K. Ho and P. Winkert, New embedding results for double phase problems with variable exponents and a priori bounds for corresponding generalized double phase problems, Calc. Var. Partial Differential Equations 62 (2023), 227.

J. Liu and P. Pucci, Existence of solutions for a double-phase variable exponent equation without the Ambrosetti–Rabinowitz condition, Adv. Nonlinear Anal. 12 (2023), 20220292.

W.L. Liu and G.W. Dai, Existence and multiplicity results for double phase problem, J. Differential Equations 265 (2018), 4311–4334.

W.L. Liu and G.W. Dai, Three ground state solutions for double phase problem, J. Math. Phys. 59 (2018), 121503.

M. Marcus and V. Mizel, Every superposition operator mapping one Sobolev space into another is continuous, J. Funct. Anal. 33 (1979), 217–229.

J. Musielak, Orlicz Spaces and Modular Spaces, Lecture Notes in Math., vol. 1034, Springer, Berlin, 1983.

N.S. Papageorgiou, Double phase problems: a survey of some recent results, Opuscula Math. 42 (2022), 257–278.

N.S. Papageorgiou, A. Pudelko and V.D. Radulescu, Non-autonomous (p, q)equations with unbalanced growth, Math. Ann., 385 (2023), 1707–1745.

N.S. Papageorgiou, D.D. Qin and V.D. Radulescu, Nonlinear eigenvalue problems for the (p, q)-Laplacian, Bull. Sci. Math. 172 (2021), 103039.

N.S. Papageorgiou, V.D. Radulescu and D.D. Repovs, Double-phase problems with reaction of arbitrary growth, Z. Angew. Math. Phys. 69 (2018), 108.

N.S. Papageorgiou, V.D. Radulescu and D. Repovs, Global multiplicity for parametric anisotropic Neumann (p, q)-equations, Topol. Methods Nonlinear Anal. 61 (2023), 393–422.

N.S. Papageorgiou, D.D. Repovs and V. D. Radulescu, Double-phase problems and a discontinuity property of the spectrum, Proc. Amer. Math. Soc. 147 (2019), 2899–2910.

V.D. Radulescu, Isotropic and anisotropic double-phase problems: old and new, Opuscula Math. 39 (2019), 259–279.

Q.H. Zhang and V.D. Radulescu, Double phase anisotropic variational problems and combined effects of reaction and absorption terms, J. Math. Pures Appl. 118 (2018), 159–203.

V.V. Zhikov, Averaging of functionals of the calculus of variations and elasticity theory, Izv. Akad. Nauk SSSR Ser. Mat. 50, (1986), 675–710.

V.V. Zhikov, On Lavrentiev’s phenomenon, Russ. J. Math. Phys., 3 (1995), 249–269.

V.V. Zhikov, S.M. Kozlov and O.A. Oleinik, Homogenization of Differential Operators and Integral Functionals, Springer–Verlag, Berlin, 1994.

Downloads

  • PREVIEW
  • FULL TEXT

Published

2024-09-21

How to Cite

1.
LIAN, Chunbo, GE, Bin, CAO, Qinghai and ZHANG, Yu. Infinitely many positive solutions for a double phase problems involving the double phase operator. Topological Methods in Nonlinear Analysis. Online. 21 September 2024. Vol. 64, no. 2, pp. 493 - 507. [Accessed 1 July 2025]. DOI 10.12775/TMNA.2024.013.
  • ISO 690
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

Vol 64, No 2 (December 2024)

Section

Articles

License

Copyright (c) 2024 Chunbo Lian, Bin Ge, Qinghai Cao, Yu Zhang

Creative Commons License

This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.

Stats

Number of views and downloads: 0
Number of citations: 0

Search

Search

Browse

  • Browse Author Index
  • Issue archive

User

User

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo

Newsletter

Subscribe Unsubscribe
Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop