Przejdź do sekcji głównej Przejdź do głównego menu Przejdź do stopki
  • Zaloguj
  • Język
    • English
    • Język Polski
  • Menu
  • Strona domowa
  • Aktualny numer
  • Online First
  • Archiwum
  • O czasopiśmie
    • O czasopiśmie
    • Przesyłanie tekstów
    • Zespół redakcyjny
    • Polityka prywatności
    • Kontakt
  • Zaloguj
  • Język:
  • English
  • Język Polski

Topological Methods in Nonlinear Analysis

A characterization of $g_2$-minimal normal 3-pseudomanifolds with at most four singularities
  • Strona domowa
  • /
  • A characterization of $g_2$-minimal normal 3-pseudomanifolds with at most four singularities
  1. Strona domowa /
  2. Archiwum /
  3. Vol 64, No 2 (December 2024) /
  4. Articles

A characterization of $g_2$-minimal normal 3-pseudomanifolds with at most four singularities

Autor

  • Biplab Basak https://orcid.org/0000-0002-4978-7022
  • Raju Kumar Gupta https://orcid.org/0000-0002-3970-8343
  • Sourav Sarkar https://orcid.org/0000-0002-6283-7135

DOI:

https://doi.org/10.12775/TMNA.2024.012

Słowa kluczowe

Normal pseudomanifolds, vertex folding, edge folding, one-vertex suspension

Abstrakt

Let $\Delta$ be a $g_2$-minimal normal 3-pseudomanifold. A vertex in $\Delta$ whose link is not a sphere is called a singular vertex. When $\Delta$ contains at most two singular vertices, its combinatorial characterization is known \cite{BasakSwartz}. In this article, we present a combinatorial characterization of such a $\Delta$ when it has three singular vertices, including one $\mathbb{RP}^2$-singularity, or four singular vertices, including two $\mathbb{RP}^2$-singularities. In both cases, we prove that $\Delta$ is obtained from a one-vertex suspension of a surface, and some boundary complexes of $4$-simplices by applying the combinatorial operations of types connected sums, vertex foldings, and edge foldings

Bibliografia

T. Akhmejanov, Triangulations of normal 3-pseudomanifolds on 9 vertices, https://pi.math.cornell.edu/~takhmejanov/pseudoManifolds.html

B. Bagchi and B. Datta, A structure theorem for pseudomanifolds, Discrete Math. 188 (1998), no. 1–3, 41–60.

B. Bagchi and B. Datta, Lower bound theorem for normal pseudomanifolds, Expo. Math. 26 (2008), 327–351.

D. Barnette, A proof of the lower bound conjecture for convex polytopes, Pacific J. Math. 46 (1973), 349–354.

D. Barnette, Graph theorems for manifolds, Israel J. Math. 16 (1973), 62–72.

B. Basak and R.K. Gupta, A characterization of normal 3-pseudomanifolds with g2 ≤ 4 (2022), 13 pp., arXiv: 2202.06638v1.

B. Basak, R.K. Gupta and S. Sarkar, A characterization of normal 3-pseudomanifolds with at most two singularities, Discrete Math. 346 (2023), no. 12, paper no. 113588, 15 pp.

B. Basak and S. Sarkar, On a construction of some homology d-manifolds (2023), 22 pp.

B. Basak and E. Swartz, Three-dimensional normal pseudomanifolds with relatively few edges, Adv. Math. 365 (2020), 107035, 1–25.

A. Björner and F.H. Lutz, Simplicial manifolds, bistellar flips and a 16-vertex triangulation of the Poincaré homology 3-sphere, Experiment. Math. 9 (2000), 275–289.

A. Fogelsanger, The generic rigidity of minimal cycles, Ph.D. thesis, Cornell University, 1988.

M. Gromov, Partial Differential Relations, Springer, Berlin, Heidelberg, New York, 1986.

G. Kalai, Rigidity and the lower bound theorem I, Invent. Math. 88 (1987), 125–151.

E. Nevo and E. Novinsky, A characterization of simplicial polytopes with g2 = 1, J. Combin. Theory Ser. A 118 (2011), 387–395.

I. Novik and E. Swartz, Face numbers of pseudomanifolds with isolated singularities, Math. Scan. 110 (2012), 198–212.

E. Swartz, Topological finiteness for edge-vertex enumeration, Adv. Math. 219 (2008), 1722–1728.

E. Swartz, Face enumeration: From spheres to manifolds, J. Eur. Math. Soc. 11 (2009), 449–485.

T. Tay, N. White and W. Whiteley, Skeletal rigidity of simplicial complexes II, European J. Combin. 16 (1995), 503–525.

D. Walkup, The lower bound conjecture for 3- and 4-manifolds, Acta Math. 125 (1970), 75–107.

H. Zheng, A characterization of homology manifolds with g2 ≤ 2, J. Combin. Theory Ser. A 153 (2018), 31–45.

Pobrania

  • PREVIEW (English)
  • FULL TEXT (English)

Opublikowane

2024-09-21

Jak cytować

1.
BASAK, Biplab, GUPTA, Raju Kumar & SARKAR, Sourav. A characterization of $g_2$-minimal normal 3-pseudomanifolds with at most four singularities. Topological Methods in Nonlinear Analysis [online]. 21 wrzesień 2024, T. 64, nr 2, s. 479–491. [udostępniono 16.12.2025]. DOI 10.12775/TMNA.2024.012.
  • PN-ISO 690 (Polski)
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Pobierz cytowania
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Numer

Vol 64, No 2 (December 2024)

Dział

Articles

Licencja

Prawa autorskie (c) 2024 Biplab Basak, Raju Kumar Gupta, Sourav Sarkar

Creative Commons License

Utwór dostępny jest na licencji Creative Commons Uznanie autorstwa – Bez utworów zależnych 4.0 Międzynarodowe.

Statystyki

Liczba wyświetleń i pobrań: 0
Liczba cytowań: 0

Wyszukiwanie

Wyszukiwanie

Przeglądaj

  • Indeks autorów
  • Lista archiwalnych numerów

Użytkownik

Użytkownik

Aktualny numer

  • Logo Atom
  • Logo RSS2
  • Logo RSS1

Newsletter

Zapisz się Wypisz się
W górę

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partnerzy platformy czasopism

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Uniwersytet Mikołaja Kopernika w Toruniu Deklaracja dostępności Sklep wydawnictwa