Skip to main content Skip to main navigation menu Skip to site footer
  • Login
  • Language
    • English
    • Język Polski
  • Menu
  • Home
  • Current
  • Online First
  • Archives
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  • Login
  • Language:
  • English
  • Język Polski

Topological Methods in Nonlinear Analysis

Local and nonlocal problems for fractional impulsive evolution systems with order $\nu\in(1,2)$
  • Home
  • /
  • Local and nonlocal problems for fractional impulsive evolution systems with order $\nu\in(1,2)$
  1. Home /
  2. Archives /
  3. Vol 64, No 2 (December 2024) /
  4. Articles

Local and nonlocal problems for fractional impulsive evolution systems with order $\nu\in(1,2)$

Authors

  • Kee Qiu
  • Michal Fečkan https://orcid.org/0000-0002-7385-6737
  • JinRong Wang https://orcid.org/0000-0002-6642-1946

DOI:

https://doi.org/10.12775/TMNA.2024.010

Keywords

PC-mild solutions, Caputo fractional derivative, impulsive conditions, evolution systems

Abstract

In this paper, we study the existence and uniqueness of $PC$-mild solutions for fractional impulsive evolution systems with Caputo derivative. First, we give a compact result of the solution operators of linear fractional evolution system while the cosine family is compact. Second, the representation of $PC$-mild solutions of linear fractional impulsive systems with initial value conditions and nonlocal initial value conditions are given by using the Laplace transform method. Third, several sufficient conditions for judging the existence and uniqueness of solutions of our problem are established via some fixed point theorems and operator semigroup theory. Finally, an example is given to illustrate the results of our paper.

References

W. Arendt, C.J.K. Batty, M. Hieber and F. Neubrander, Vector-Valued Laplace Transforms and Cauchy Problems, Birkhäuser Verlag, Basel, 2011.

M. Benchohra, J. Henderson and S.K. Ntouyas, Impulsive Differential Equations and Inclusions, Hindawi Publishing Corporation, New York, 2006.

J. Borah and S.N. Bora, Non-instantaneous impulsive fractional semilinear evolution equation with finite delay, J. Fract. Calc. Appl. 12 (2021), 120–132.

H. Chen and M. Ni, A singular approach to a class of impulsive differential equation, J. Appl. Anal. Comput. 6 (2016), 1195–1204.

H. Emamirad and A. Rougirel, Delsarte equation for Caputo operator of fractional calculus, Fract. Calc. Appl. Anal. 25 (2022), 584–607.

M. Fečkan, Y. Zhou and J. Wang, On the concept and existence of solution for impulsive fractional differential equations, Commun. Nonlinear Sci. Numer. Simul. 17 (2012), 3050–3060.

J.A. Goldstein, Semigroups of Linear Operators and Applications, Oxford University Press, New York, 1985.

E. Hilfer, Applications of Fractional Calculus in Physics, World Science Publishing, New York, 2000.

R.W. Ibrahim, Fractional calculus of real and complex variables and its applications, J. Fract. Calc. Appl. 3 (2021), 1–10.

A.A. Kilbas, H.M. Srivastava and J.J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier, Amsterdam, 2006.

V. Lakshmikantham, D.D. Bainov and P.S. Simeonov, Theory of Impulsive Differential Equations, World Scientific, Singapore, 1989.

F. Mainardi, P. Paradisi and R. Gorenflo, Probability distributions generated by fractional diffusion equations, preprint, arXiv: 0704. 0320, 2007.

A. Meraj and D.N. Pandey, Approximate controllability of fractional integro-differential evolution equations with nonlocal and non-instantaneous impulsive conditions, J. Fract. Calc. Appl. 10 (2019), 3–17.

V.D. Mil’man and A.D. Myšhkis, On the stability of motion in the presence of impulses, Sibirsk. Mat. 1 (1960), 233–237.

K.B. Oldham and J. Spanier, The Fractional Calculus, Academic Press, New York, 1974.

A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer, New York, 1983.

I. Podlubny, Fractional Differential Equations, Academic Press, San Diego, 1999.

Z̆. Tomovski, R. Metzler and S. Gerhold, Fractional characteristic functions and a fractional calculus approach for moments of random variables, Fract. Calc. Appl. Anal. 25 (2022), 1307–1323.

C.C. Travis and G.F. Webb, Cosine families and abstract nonlinear second order differential equations, Acta Math. Hungar. 32 (1978), 75–96.

J. Wang, M. Fečkan and Y. Zhou, On the new concept of solutions and existence results for impulsive fractional evolution equations, Dyn. Partial Differ. Equ. 8 (2011), 345-361.

L. Xu and P.L. Li, The existence of nontrivial solutions for an impulsive fractional differential equation with Dirichlet boundary conditions, J. Math. Pract. Theory. 50 (2020), 235–242.

H.M. Zayed, A survey on fractional calculus in geometric function theory, J. Fract. Calc. Appl. 6 (2021), 1–16.

Y. Zhou, Fractional Evolution Equations and Inclusions: Analysis and Control, Elsevier, Academic Press, London, 2016.

Y. Zhou, M. Fečkan, J. Wang and D. O’Regan, Relative controllability of impulsive multi-delay differential systems, Nonlinear Anal. Model. Control. 27 (2022), 70–90.

Y. Zhou and J.W. He, New results on controllability of fractional evolution systems with order α ∈ (1, 2), Evol. Equ. Control Theory 10 (2021), 491–509.

Y. Zhou and F. Jiao, Existence of mild solutions for fractional neutral evolution equations, Comput. Math. Appl. 59 (2010), 1063–1077.

Y. Zhou, J. Wang and L. Zhang, Basic theory of fractional differential equations, 2nd edition, World Scientific, New Jersey, 2016.

Downloads

  • PREVIEW
  • FULL TEXT

Published

2024-09-21

How to Cite

1.
QIU, Kee, FEČKAN, Michal and WANG, JinRong. Local and nonlocal problems for fractional impulsive evolution systems with order $\nu\in(1,2)$. Topological Methods in Nonlinear Analysis. Online. 21 September 2024. Vol. 64, no. 2, pp. 441 - 469. [Accessed 17 May 2025]. DOI 10.12775/TMNA.2024.010.
  • ISO 690
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

Vol 64, No 2 (December 2024)

Section

Articles

License

Copyright (c) 2024 Kee Qiu, Michal Fečkan, JinRong Wang

Creative Commons License

This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.

Stats

Number of views and downloads: 0
Number of citations: 0

Search

Search

Browse

  • Browse Author Index
  • Issue archive

User

User

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo

Newsletter

Subscribe Unsubscribe
Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop