Multiplicity of 2-nodal solutions of the Yamabe equation
DOI:
https://doi.org/10.12775/TMNA.2023.062Keywords
Analysis of PDEs, Differential GeometryAbstract
Given a closed Riemannian manifold $(M,g)$, we use the gradient flow method and Sign-Changing Critical Point Theory to prove multiplicity results for $2$-nodal solutions of a subcritical non-linear equation on $(M,g)$, see \eqref{yam-nodal-1} below. If $(N,h)$ is a closed Riemannian manifold of constant positive scalar curvature our result gives multiplicity results for the Yamabe-type equation on the Riemannian product $(M\times N , g + \ve h )$, for $\ve > 0$ small.References
B. Ammann, M. Dahl and E. Humbert, Smooth Yamabe invariant and surgery, J. Differential Geometry 94 (2013), 1–58.
B. Ammann and E. Humbert, The second Yamabe invariant, J. Funct. Anal. 235 (2006), 377–412.
B. Asari, Riemannian Lp center of mass: existence, eniqueness, and convexity, Proceedings of the American Mathematical Society, vol. 139, no. 2, February 2011, pp. 655–673.
T. Aubin, Equations differentielles non-lineaires et probleme de Yamabe concernant la courbure scalaire, J. Math. Pures Appl. 55 (1976), 269–296.
T. Bartsch, M. Clapp and T. Weth, Configuration spaces, transfer, and 2-nodal solutions of a semiclassical nonlinear Schödinger equation, Math. Ann. 338 (2005), 147–187.
V. Benci, C. Bonanno and M. Micheletti, On a multiplicity of solutions of a nonlinear elliptic problem on a Riemannian manifolds, J. Funct. Anal. 252 (2007), no. 1, 147–185.
R. Bettiol and P. Piccione, Multiplicity of solutions to the Yamabe problem on collapsing Riemannian submersions, Pacific J. Math. 266 (2013), 1–21.
A. Castro, J. Cossio and J.M. Neuberger, A sign-changing solution for a superliner Dirichlet problem, Rocky Mountain J. Math. 27 (2005), no. 4, 1041–1053.
K.-C. Chang, Methods in Nonlinear Analysis, Springer, 2005.
K.-C. Chang, Infinite Dimensional Morse Theory and Multiple Solution Problems, Birkhäuser, Basel, 1993.
M. Clapp, J. Faya and A. Pistoia, Nonexistence and multiplicity of solutions to elliptic problems with supercritical exponents, Calc. Var. Partial Differ. Equ. 48 (2013), 611–623.
M. Clapp and J.C. Fernández, Multiplicity of nodal solution to the Yamabe problem, Calc. Var. Partial Differ. Equ. 56 (2017), paper no.] 145, 611–623.
M. Clapp and M. Micheletti, Asymptotic profile of 2-nodal solutions to a semilinear elliptic problem on a Riemannian manifold, Adv. Differential Equations 19 (2014), no. 3/4, 225–244, DOI: 10.57262/ade/1391109085.
M. Clapp and M. Micheletti, Multiplicity and asymptotic profile of 2-nodal solutions to a semilinear elliptic problem on a Riemannian manifold (2013), arXiv: 1301.0143.
E.N. Dancer, A.M. Micheletti and A. Pistoia, Multipeak solutions for some singularly perturbed nonlinear elliptic problems on Riemannian manifolds, Manuscripta Math. 128 (2009), 163–193.
L.L. de Lima, P. Piccione and M. Zedda, On bifurcation of solutions of the Yamabe problem in product manifolds, Ann. Inst. H. Poincaré C Non Linéaire Anal. 29 (2012), 261–277.
S. Deng, Z. Khemiri and F. Mahmoudi, On spike solutions for a singularly perturbed problem in a compact Riemannian manifold, Commun. Pure Appl. Anal. (2018), no. 5, 2063–2084.
Y. Ding, On a conformally invariant elliptic equation on Rn , Comm. Math. Phys. 107 (1986), no. 2, 331–335.
J.C. Fernandez and J. Petean, Low energy nodal solutions to the Yamabe equation, arXiv: 1807.06114.
B. Gidas, W.-M. Ni and L. Nirenberg, Symmetry of positive solutions of nonlinear elliptic equations in Rn , Adv. Math. Suppl. Stud. A (1981), 369–402.
K. Grove and H. Karcher, How to conjugate C 1 -close group actions, Math. Z. 132 (1973), 11–20.
E. Hebey, NonLinear Analysis on Manifolds: Sobolov Spaces and inequalities, Courant Lecture Notes in Mathematics, vol. 5, New York University, Courant Institute of Mathematics Sciences, New York; American Mathematical Society, Province, Rhode Island, 1999.
G. Henry and F. Madani, Equivariant second Yamabe constant, J. Geom. Anal. 28 (2018), 3747–3774, DOI: 10.1007/s12220-017-9978-x.
G. Henry and J. Petean, Isoparametric hypersurfaces and metrics of constant scalar curvature, Asian J. Math. 18 (2014), 53–68.
N. Hirano, Multiple existence of solutions for a nonlinear elliptic problem on a Riemannian manifold, Nonlinear Anal. 70 (2009), 671–692.
H. Karcher, Riemannian center of mass and mollifier smoothing, Comm. Pure Applied Math. 30 (1977), 509–541
M.K. Kwong, Uniqueness of positive solutions of ∆u − u + up = 0 in Rn , Arch. Rational. Mech. Anal. 105 (1989), 243–266.
J.M. Lee, Riemannanian Manifolds An Introduction to the Curvature, vol. 176, Springer GTM, 1997.
J.M. Lee and T.H. Parker, The Yamabe problem, Bull. Amer. Math. Soc. (N.S.) 17 (1987), no. 1, 37–91.
A.M. Micheletti and A. Pistoia, The role of the scalar curvature in a nonlinear elliptic problem on Riemannian manifolds, Calc. Var. 34 (2009), 233–265.
M. Obata, The conjectures on conformal transformations of Riemannian manifolds, J. Differential Geom. 6 (1971), 247–258.
J. Petean, Multiplicity results for the Yamabe equation by Lusternik–Schnirelamm theory, J. Funct. Anal. 276 (2019), 1788–1805.
B. Premoselli andJ. Vétois, Sign-changing blow-up for the Yamabe equation at the lowest energy level, Adv. Math. 410 (2022), Part B, DOI: 10.1016/j.aim.2022.108769.
C. Rey and J.M. Ruiz, Multipeak solutions for the Yamabe equation, arXiv: 1807.08385.
F. Robert and J. Vétois, Sign-changing blow-up for scalar curvature type equations, Comm. Partial Differential Equations 38 (2013), 1437–1465.
M. Schechter and W. Zou, Critical Point Theory and its applications, Springer–Verlag, 2006.
R. Schoen, Conformal deformation of a Riemannian metric to constant scalar curvature, J. Differential Geometry 20 (1984), 479–495.
R. Schoen, Variational theory for the total scalar curvature functional for Riemannian metrics and related topics, Lecture Notes in Math., vol. 1365, Springer–Verlag, Berlin, 1989, pp. 120–154.
N. Trudinger, Remarks concerning the conformal deformation of Riemannian structures on compact manifolds, Ann. Scuola Norm. Sup. Pisa 22 (1968), no. 3, 265–274.
J. Wei and M. Winter, Mathematics Aspects of Pattern Formations in Biological System, vol. 189, AMS, Springer–Verlag, 2014.
T. Weth, Energy bounds for entire nodal solutions of autonomus superlinear equations, Calc. Var. Partial Differential Equations 27 (2006), no. 4, 421–437.
H. Yamabe, On a deformation of Riemannian structures on compact manifolds, Osaka Math. J. 12 (1960), 21–37.
Z. Zhang, Variational, Topological and Partial Order Methods with Their Applications, Developments in Matematics, vol. 29, Springer–Verlag, 2013.
W. Zou, Sign-Changing Critical Point Theory, Springer–Verlag, 2008.
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Jorge Dávila Ortiz, Héctor Barrantes González, Isidro H. Munive Lima
This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.
Stats
Number of views and downloads: 0
Number of citations: 0