Existence of positive solution for a class of quasilinear Schrödinger equations with potential vanishing at infinity on nonreflexive Orlicz-Sobolev spaces
DOI:
https://doi.org/10.12775/TMNA.2023.053Keywords
Orlicz-Sobolev spaces, variational methods, quasilinear elliptic problems, $\Delta_{2}$-conditionAbstract
In this paper we investigate the existence of positive solution for a class of quasilinear problem on an Orlicz-Sobolev space that can be nonreflexive $$ - \Delta_{\Phi} u +V(x)\phi(|u|)u= K(x)f(u)\quad\mbox{in } \mathbb{R}^{N}, $$ where $ N \geq 2 $, $ V, K $ are nonnegative continuous functions and $f$ is a continuous function with a quasicritical growth. Here we extend the Hardy-type inequalities presented in \cite{AlvesandMarco} to nonreflexive Orlicz spaces. Through inequalities together with a variational method for non-differentiable functionals we will obtain a ground state solution. We analyze also the problem with $V=0$.References
A. Adams and J.F. Fournier, Sobolev Spaces, Academic Press, 2003.
C.O. Alves and M.L.M. Carvalho, A Lions Type Result for a Large Class of Orlicz–Sobolev Space and Applications, Moscow Mathematical Journal, 2021.
C.O. Alves and M.A.S. Souto, Existence of solutions for a class of nonlinear Schrödinger equations with potential vanishing at infinity, J. Differential Equations 254 (2013), 1977–1991.
H. Berestycki and P.L. Lions, Nonlinear scalar field equations. I. Existence of a ground state, Arch. Ration. Mech. Anal. 82 (1983), 313–346.
G. Bonanno, G.M. Bisci and V. Radulescu, Quasilinear elliptic non-homogeneous Dirichlet problems through Orlicz–Sobolev spaces, Nonlinear Anal. 75 (2012), 4441–4456.
G. Bonanno, G.M. Bisci and V. Radulescu, Arbitrarily small weak solutions for a nonlinear eigenvalue problem in Orlicz–Sobolev spaces, Monatshefte für Mathematik 165 (2012), 305–318.
H. Brézis, Functional Analysis, Sobolev Spaces and Partial Differential Equations, Springer, New York, 2011.
PH. Clément, M. Garcia-Huidobro, R. Manásevich and K. Schmitt, Mountain pass type solutions for quasilinear elliptic equations, Calc. Var. 11 (2000), 33–62.
R. Černý, Generalized Moser–Trudinger inequality for unbounded domains and its application, Nonlinear Differ. Equ. Appl. 19 (2012), DOI: 10.1007/s00030-011-0143-0.
E. DiBenedetto, C 1,γ local regularity of weak solutions of degenerate elliptic equations, Nonlinear Anal. 7, (1985), no. 8, 827–850.
T. Donaldson, Nonlinear elliptic boundary value problems in Orlicz–Sobolev spaces, J. Differential Equations 10 (1971), 507–528.
I. Ekeland and R. Temam, Convex Analysis and Variational Problems, North Holland, American Elsevier, New York, 1976.
G.M. Figueiredo, Existence and multiplicity of solutions for a class of p&q elliptic problems with critical exponent, Math. Nachr. 286 (2013), no. 11–12, 1129–1141.
M. Fuchs and G. Li, Variational inequalities for energy functionals with nonstandard growth conditions, Abstr. Appl. Anal. 3 (1998), 405–412.
M. Fuchs and V. Osmolovski, Variational integrals on Orlicz Sobolev spaces, Z. Anal. Anwend. 17 (1998), 393-415.
N. Fukagai, M. Ito and K. Narukawa, Positive solutions of quasilinear elliptic equations with critical Orlicz–Sobolev nonlinearity on RN , Funskcial. Ekvac. 49 (2006), 235–267.
N. Fukagai and K. Narukawa, On the existence of multiple positive solutions of quasilinear elliptic eigenvalue problems, Ann. Mat. Pura Appl. 186 (2007), no. 3, 539–564.
J.P. Gossez, Nonlineare elliptic boundary value problems for equations with rapidly (or slowly) increasing coefficients, Trans. Amer. Math. Soc. 190 (1974), 753–758.
O.A. Ladyzhenskaya and N.N. Ural’tseva, Linear and Quasilinear Elliptic Equations, Acad. Press, 1968.
V.K. Le and K. Schmitt, Quasilinear elliptic equations and inequalities with rapidly growing coefficients, J. London Math. Soc. 62 (2000), 852–872.
M. Mihăilescu and V. Rădulescu, Nonhomogeneous Neumann problems in Orlicz–Sobolev spaces, C.R. Acad. Sci. Paris, Ser. I 346 (2008), 401–406.
M. Mihăilescu and V. Rădulescu, Existence and multiplicity of solutions for a quasilinear non-homogeneous problems: An Orlicz–Sobolev space setting, J. Math. Anal. Appl. 330 (2007), 416–432.
M. Mihăilescu, V. Rădulescu and D. Repovs, On a non-homogeneous eigenvalue problem involving a potential: an Orlicz–Sobolev space setting, J. Math. Pures Appl. 93 (2010), 132–148.
M. Mihăilescu and D. Repovs, Multiple solutions for a nonlinear and non-homogeneous problems in Orlicz–Sobolev spaces, Appl. Math. Comput. 217 (2011), 6624–6632.
D. Montreano, D. Montreano and N.S. Papageorgiou, Topological and Variational Methods with Applications to Nonlinear Boundary Value Problems, Springer, New York, 2014.
V. Mustonen and M. Tienari, An eigenvalue problem for generalized Laplacian in Orlicz–Sobolev spaces, Proc. Roy. Soc. Edinburgh Sect. A, 129 (1999), 153–163.
W. Orlicz, Über konjugierte Exponentenfolgen, Studia Math. 3 (1931), 200–211.
M. N. Rao and Z.D. Ren, Theory of Orlicz Spaces, Marcel Dekker, New York, 1985.
A.R.D. Silva and C.O. Alves, Multiplicity and concentration of positive solutions for a class of quasilinear problems through Orlicz–Sobolev space, J. Math. Phys. 57 (2016), 143–162.
E.D. da Silva, M.L.M. Carvalho, K. Silva and J.V.A. Gonçalves, Quasilinear elliptic problems on non-reflexive Orlicz–Sobolev spaces, Topol. Methods Nonlinear Anal. 54 (2019), 587–612.
A. Szulkin, Minimax principle for lower semicontinuous functions and applications to nonlinear boundary value problems, Ann. Inst. H. Poincaré 3 (1986), 77–109.
M. Tienari A degree Theory for a Class of Mappings of Monotone Type in Orlicz–Sobolev Spaces, Ann. Acad. Sci. Fenn. Math. Diss., 97.
N.S. Trudinger, On Harnack type inequalities and their applicatoin to quasilinear elliptic equations, Comm. Pure Appl. Math. XX (1967), 721–747.
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Lucas da Silva, Marco A. S. Souto
This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.
Stats
Number of views and downloads: 0
Number of citations: 0