Weakly nonlinear hyperbolic differential equation of the second order in Hilbert space
DOI:
https://doi.org/10.12775/TMNA.2023.056Keywords
Boundary-value problem, nonlinear hyperbolic differential equation, van der Pol equation, Moore-Penrose pseudo-inverse matrixAbstract
We consider nonlinear perturbations of the hyperbolic equation in the Hilbert space. Necessary and sufficient conditions for the existence of solutions of boundary-value problem for the corresponding equation and iterative procedures for their finding are obtained in the case when the operator in linear part of the problem hasn't inverse and can have nonclosed set of values. As an application we consider boundary-value problem for van der Pol equation in a separable Hilbert space.References
M. Attari, M. Haeri and M.S. Tavazoei, Analysis of a fractional order Van der Pol-like oscillator via describing function method, Nonlinear Dyn. 61 (2010), 265–274.
Z. Bai, W. Li and W. Ge, Existence and multiplicity of solutions for four-point boundaryvalue problems at resonance, Nonlinear Anal. 60 (2005), 1151–1162.
Z. Balanov, M. Farzamirad and W. Krawcewicz, Symmetric systems of van der Pol equations, Topol. Methods Nonlinear Anal. 27 (2006), 29–90.
P.J. Beek, R.C. Schmidt, A.W. Morris, M.Y. Sim and M.T. Turvey, Linear and nonlinear stiffness and friction in biological rythmic movements, Biol. Cybern. 73 (1995), 499–507.
A. Boichuk and O. Pokutnyi, Solutions of the Schrödinger equation in a Hilbert space, Bound. Value Probl. 2014 (2014).
A.A. Boichuk and A.A. Pokutnyi, Perturbation theory of operator equations in the Fréchet and Hilbert spaces, Ukrainian Math. J. 67 (2016), 1327–1335.
A.A. Boichuk and O.O. Pokutnyi, Bifurcation of solutions of the second order boundary-value problems in Hilbert spaces, Miskolc Math. Notes 20 (2019), 139–152.
A.A. Boichuk and A.M. Samoilenko, Generalized Inverse Operators and Fredholm Boundary-Value Problems, second edition, De Gruyter, Berlin; Boston, 2016.
A. Ćwiszewski and P. Kokocki, Periodic solutions of nonlinear hyperbolic evolution systems, J. Evol. Equ. 10 (2010), 677–710.
Y. Deng and F. Pusateri, On the global behavior of weak null quasilinear wave equations, Comm. Pure Appl. Math. 73 (2020), 1035–1099.
I.P. Gavrilyuk, V.L. Makarov and N.V. Mayko, Weighted estimates of the Cayley transform method for abstract differential equations, Comput. Methods Appl. Math. 21 (2021), 53–68.
I.P. Gavrilyuk, V.L. Makarov and V.B. Vasylyk, Exponentially Convergent Algorithms for Abstract Differential Equations, Birkhäuser, Basel, 2011.
Z.M. Ge and S.-Y. Li, Chaos generalized synchronization of new Mathieu-Van der Pol systems with new Duffing-Van der Pol systems as functional system by GYC partial region stability theory, Appl. Math. Model. 35 (2011), 5245–5264.
V.I. Gorbachuk and M.L. Gorbachuk, Boundary-Value Problems for Operator Differential Equations, Springer, Dordrecht, 1991.
M.C. Gouveia and R. Puystjens, About the group inverse and Moore-Penrose inverse of a product, Linear Algebra Appl. 150 (1991), 361–369.
Y.J. Huang and H.K. Liu, A new modification of the variational iteration method for Van der Pol equations, Appl. Math. Model. 37 (2013), 8118–8130.
B.Z. Kaplan, I. Gabay, G. Sarafian and D. Sarafian, Biological applications of the “filtered” Van der Pol oscillator, J. Franklin Inst. 345 (2008), 226–232.
T. Kawahara, Coupled Van der Pol oscillators — A model of excitatory and inhibitory neural interactions, Biol. Cybern. 39 (1980), 37–43.
D.A. Klyushin, S.I. Lyashko, D.A. Nomirovskiı̆, Yu.I. Petunin and V.V. Semenov, Generalized Solutions of Operator Equations and Extreme Elements, Springer, New York, 2012.
S.G. Krein, Linear Equations in Banach Spaces, Birkhäuser, Boston, 1982.
A. Kumar, M. Muslim and R. Sakthivel, Controllability of the second-order nonlinear differential equations with non-instantaneous impulses, J. Dyn. Control Syst. 24 (2018), 325–342.
N. Levinson, A second order differential equation with singular solutions, Ann. Math. 50 (1949), 127–153.
J. Lı́maco, M.R. Nun̄ez-Chávez and D.N. Huaman, Exact controllability for nonlocal and nonlinear hyperbolic PDEs, Nonlinear Anal. 214 (2022), 112569.
M. Modanli and A. Akgül, On solutions to the second-order partial differential equations by two accurate methods, Numer. Methods Partial Differential Equations 34 (2018), 1678–1692.
S.V. Pereverzev and E. Schock, On the adaptive selection of the parameter in regularization of ill-posed problems, SIAM J. Numer. Anal. 43 (2005), 2060–2076.
C.M.A. Pinto and J.A.T. Machado, Complex order Van der Pol oscillator, Nonlinear Dyn. 65 (2011), 247-254.
G.D. Prato and J. Zabczyk, Second Order Partial Differential Equations in Hilbert Spaces, Cambridge University Press, Cambridge, 2002.
R.E. Showalter, Hilbert Space Methods for Partial Differential Equations, TX: Southwest Texas State University, San Marcos, 1994.
B. Van der Pol, A theory of the amplitude of free and forced triode vibrations, Radio Rev. Sel. Sci. Pap. 1 (1960), 754–762.
B. Van der Pol and J. Van der Mark, Frequency demultiplication, Nature 120 (1927), 363–364.
B. Van der Pol and J. Van der Mark, The heartbeat considered as a relaxation oscillation, and an electrical model of the heart, Philos. Mag. 6 (1929), 763–775.
C. Zhang, B. Zheng and L. Wang, Multiple Hopf bifurcations of three coupled Van der Pol oscillators with delay, Appl. Math. Comput. 217 (2011), 7155–7166.
M. del Pino, P. Drabek, R. Manasevich. The Fredholm Alternative at the first Eigenvalue for the one dimensional p-Laplacian, J. Differential Equations 151 (1999), 386–419.
Published
How to Cite
Issue
Section
Stats
Number of views and downloads: 0
Number of citations: 0