Reverse Faber-Krahn inequalities for Zaremba problems
DOI:
https://doi.org/10.12775/TMNA.2023.055Keywords
Zaremba problems, reverse Faber-Krahn inequality, Steiner formula, Nagy's inequality, method of interior parallel setsAbstract
Let $\Omega$ be a domain in $\mathbb{R}^n$ ($n\geq 2$) of the form $\Omega=\Omega_{\text{out}}\setminus \overline{\Omega_{\text{in}}}$. Set $\Omega_D$ to be either $\Omega_{\text{out}}$ or $\Omega_{\text{in}}$. For $p\in (1,\infty)$, and $q\in [1,p]$, let $\tau_{1,q}(\Omega)$ be the first eigenvalue of \begin{alignat*}2 -\Delta_p u &=\tau \bigg(\int_{\Omega}|u|^q dx \bigg)^{({p-q})/{q}} |u|^{q-2}u &\quad&\text{in }\Omega,\\ u &=0&\quad&\text{on } \partial\Omega_D, \\ \frac{\partial u}{\partial \eta}&=0&\quad& \text{on } \partial \Omega\setminus \partial \Omega_D. \end{alignat*} Under the assumption that $\Omega_D$ is convex, we establish the following reverse Faber-Krahn inequality $$\tau_{1,q}(\Omega)\leq \tau_{1,q}({\Omega}^\star), $$% where ${\Omega}^\star=B_R\setminus \overline{B_r}$ is a concentric annular region in $\mathbb{R}^n$ having the same Lebesgue measure as $\Omega$ and such that \begin{enumerate}[(i)] \item (when $\Omega_D=\Omega_{\text{out}}$) $W_1(\Omega_D)= \omega_n R^{n-1}$, and $(\Omega^\star)_D=B_R$, \item (when $\Omega_D=\Omega_{\text{in}}$) $W_{n-1}(\Omega_D)=\omega_nr$, and $(\Omega^\star)_D=B_r$. \end{enumerate} Here $W_{i}(\Omega_D)$ is the $i^{\text{th}}$ {\it quermassintegral} of $\Omega_D$. We also establish Sz.-Nagy's type inequalities for parallel sets of a convex domain in $\mathbb{R}^n$ ($n\geq 3$) for our proof.References
T.V. Anoop and K. Ashok Kumar, On reverse Faber–Krahn inequalities, J. Math. Anal. Appl. 485 (2020), no. 1, 123766, 20.
T.V. Anoop, V. Bobkov and S. Sasi, On the strict monotonicity of the first eigenvalue of the p-Laplacian on annuli, Trans. Amer. Math. Soc. 370 (2018), no. 10, 7181–7199.
V. Bobkov and S. Kolonitskiı̆, On qualitative properties of solutions for elliptic problems with the p-Laplacian through domain perturbations, Comm. Partial Differential Equations 45 (2020), no. 3, 230–252.
B. Brandolini, C. Nitsch and C. Trombetti, An upper bound for nonlinear eigenvalues on convex domains by means of the isoperimetric deficit, Arch. Math. (Basel) 94 (2010), no. 4, 391–400.
D. Bucur and A. Giacomini, Faber–Krahn inequalities for the Robin–Laplacian: a free discontinuity approach, Arch. Ration. Mech. Anal. 218 (2015), no. 2, 757–824.
Y.D. Burago and V.A. Zalgaller, Geometric Inequalities, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 285, Springer-Verlag, Berlin, 1988, transl. from the Russian by A.B. Sosinskiı̆, Springer Series in Soviet Mathematics.
A.M.H. Chorwadwala and M. Ghosh, Optimal shapes for the first Dirichlet eigenvalue of the p-Laplacian and dihedral symmetry, J. Math. Anal. Appl. 508 (2022), no. 2, paper no. 125901, 18.
D. Daners and J. Kennedy, Uniqueness in the Faber–Krahn inequality for Robin problems, SIAM J. Math. Anal. 39 (2007/2008), no. 4, 1191–1207.
F. Della Pietra and G. Piscitelli, An optimal bound for nonlinear eigenvalues and torsional rigidity on domains with holes, Milan J. Math. 88 (2020), no. 2, 373–384.
E. DiBenedetto, C 1+α local regularity of weak solutions of degenerate elliptic equations, Nonlinear Anal. 7 (1983), no. 8, 827–850.
L.C. Evans, Partial Differential Equations, Graduate Studies in Mathematics, vol. 19, American Mathematical Society, Providence, RI, second edition, 2010.
L.C. Evans and R.F. Gariepy, Measure Theory and Fine Properties of Functions, Textbooks in Mathematics, CRC Press, Boca Raton, FL, revised edition, 2015.
G. Faber, Beweis, dass unter allen homogenen Membranen von gleicher Fläche und gleicher Spannung die kreisförmige den tiefsten Grundton gibt, Verlagd. Bayer. Akad. d. Wiss., 1923.
J.P. Garcı́a Azorero and I. Peral Alonso, Existence and nonuniqueness for the pLaplacian: nonlinear eigenvalues, Comm. Partial Differential Equations 12 (1987), no. 12, 1389–1430.
A. Gray, Tubes, Progress in Mathematics, vol. 221, Birkhäuser Verlag, Basel, second edition, 2004, with a preface by Vicente Miquel.
A. Henrot, Shape Optimization and Spectral Theory, De Gruyter, Berlin, Boston, 13 April 2021.
A. Henrot, Extremum Problems for Eigenvalues of Elliptic Operators, Frontiers in Mathematics, Birkhäuser Verlag, Basel, 2006.
J. Hersch, The method of interior parallels applied to polygonal or multiply connected membranes, Pacific J. Math. 13 (1963), 1229–1238.
B. Kawohl, Symmetry results for functions yielding best constants in Sobolev-type inequalities, Discrete Contin. Dynam. Systems 6 (2000), no. 3, 683–690.
B. Kawohl, M. Lucia and S. Prashanth, Simplicity of the principal eigenvalue for indefinite quasilinear problems, Adv. Differential Equations 12 (2007), no. 4, 407 – 434.
S. Kesavan, Symmetrization and Applications, Series in Analysis, vol. 3, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2006.
E.T. Kornhauser and I. Stakgold, A variational theorem for ∇2 u + λu = 0 and its applications, J. Math. Physics 31 (1952), 45–54.
E. Krahn, Über eine von Rayleigh formulierte Minimaleigenschaft des Kreises, Math. Ann. 94 (1925), no. 1, 97–100.
E. Krahn, Über minimaleigenschaften der Kugel in drei und mehr Dimensionen, Acta Comm. Univ. Tartu (Dorpat) A9 (1926), 1–44.
E. Makai, On the principal frequency of a convex membrane and related problems, Czechoslovak Mathematical Journal 09 (1959), no. 1, 66–70.
A.I. Nazarov, The one-dimensional character of an extremum point of the Friedrichs inequality in spherical and plane layers, J. Math. Sci. (New York) 102 (2000), no. 5, 4473–4486.
A.I. Nazarov, On the symmetry of extremals in the weight embedding theorem, J. Math. Sci. (New York), 107 (2001), no. 3, 3841–3859.
G. Paoli, G. Piscitelli and L. Trani, Sharp estimates for the first p-Laplacian eigenvalue and for the p-torsional rigidity on convex sets with holes, ESAIM Control Optim. Calc. Var. 26 (2020), paper no. 111, 15.
L.E. Payne and H.F. Weinberger, Some isoperimetric inequalities for membrane frequencies and torsional rigidity, J. Math. Anal. Appl. 2 (1961), 210–216.
G. Pólya, Two more inequalities between physical and geometrical quantities, J. Indian Math. Soc. (N.S.) 24 (1960), 413–419.
J.W.S. Rayleigh, Baron, The Theory of Sound, 2nd edition, Dover Publications, New York, 1945.
R. Schneider, Convex bodies: the Brunn–Minkowski theory, Encyclopedia of Mathematics and its Applications, vol. 151, Cambridge University Press, Cambridge, expanded edition, 2014.
J. Steiner, Über parallele flächen, Monatsbericht der Akademie der Wissenschaften zu Berlin, 1840, pp. 114–118.
B. Sz.-Nagy, Über Parallelmengen nichtkonvexer ebener Bereiche, Acta Sci. Math. (Szeged) 20 (1959), 36–47.
G. Szegö, Inequalities for certain eigenvalues of a membrane of given area, J. Rational Mech. Anal. 3 (1954), 343–356.
H.F. Weinberger, An isoperimetric inequality for the N -dimensional free membrane problem, J. Rational Mech. Anal. 5 (1956), 633–636.
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Thazhe Veetil Anoop, Mrityunjoy Ghosh
This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.
Stats
Number of views and downloads: 0
Number of citations: 0