Skip to main content Skip to main navigation menu Skip to site footer
  • Login
  • Language
    • English
    • Język Polski
  • Menu
  • Home
  • Current
  • Online First
  • Archives
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  • Login
  • Language:
  • English
  • Język Polski

Topological Methods in Nonlinear Analysis

Existence of solutions for the $(p,N)$-Laplacian equation with logarithmic and critical exponential nonlinearities
  • Home
  • /
  • Existence of solutions for the $(p,N)$-Laplacian equation with logarithmic and critical exponential nonlinearities
  1. Home /
  2. Archives /
  3. Vol 64, No 1 (September 2024) /
  4. Articles

Existence of solutions for the $(p,N)$-Laplacian equation with logarithmic and critical exponential nonlinearities

Authors

  • Jialin Jiang
  • Yang Yang

DOI:

https://doi.org/10.12775/TMNA.2023.054

Keywords

(p, N)-Laplacian, variational methods, logarithmic nonlinearity, exponential critical growth

Abstract

This paper deals with the following $(p,N)$-Laplacian equation with logarithmic and critical exponential nonlinearities. Precisely, we study the problem \begin{equation*} \begin{cases} -\Delta_p u -\Delta_N u = |u|^{q-2}u \ln|u|^2 + \lambda f(u) & \text{in }\Omega,\\ u=0 & \text{on }\partial \Omega, \end{cases} \end{equation*} where $\Omega \subset \mathbb{R}^N$ is a bounded domain, $N \geq 2$, $1< p< N< q$, $\lambda > 0$ is a positive real parameter. By applying variational methods, we obtain the existence of solutions.

References

M.J. Alves, R.B. Assunçao and O.H. Miyagaki, Existence result for a class of quasilinear elliptic equations with (p, q)-Laplacian and vanishing potentials, Illinois J. Math. 59 (2015), no. 3, 545–575.

V. Ambrosio and D. Repovs̆, Multiplicity and concentration results for a (p, q)-Laplacian problem in RN , Z. Angew. Math. Phys. 72 (2021), 1–33.

L. Baldelli, Y. Brizi and R. Filippucci, Multiplicity results for (p, q)-Laplacian equations with critical exponent in RN and negative energy, Calc. Var. Partial Differential Equations, 60 (2021), no. 1, 8.

L. Baldelli and R. Filippucci, Existence of solutions for critical (p, q)-Laplacian equations in RN , Commun. Contemp. Math. 25 (2023), no. 5, 2150109.

E.S. Böer and O.H. Miyagaki, On the existence and multiplicity of solutions for the N -Choquard logarithmic equation with exponential critical growth, arXiv 2103 (2021), 08103, preprint.

E.S. Böer and O.H. Miyagaki, (p, N )-Choquard logarithmic equation involving a nonlinearity with exponential critical growth: existence and multiplicity, arXiv 2105 (2021), 11442, preprint.

J.L. Carvalho, G.M. Figueiredo and M.F. Furtado et al., On a zero-mass (N, q)Laplacian equation in RN with exponential critical growth, Nonlinear Anal. 213 (2021), 112488.

G.S. Costa and G.M. Figueiredo, On a critical exponential p&N equation type: Existence and concentration of changing solutions, Bull. Braz. Math. Soc. (N.S.) 53 (2022), no. 1, 243–280.

S. Chen, A. Fiscella and P. Pucci et al., Coupled elliptic systems in RN with (p, N ) Laplacian and critical exponential nonlinearities, Nonlinear Anal. 201 (2020), 112066.

A.L.A. de Araujo and M. Montenegro, Existence of solution for a general class of elliptic equations with exponential growth, Ann. Mat. Pura Appl. 195 (2016), no. 5, 1737–1748.

L.R. de Freitas, Multiplicity of solutions for a class of quasilinear equations with exponential critical growth, Nonlinear Anal. 95 (2014), 607–624.

D.G.D. Figueiredo, O.H. Miyagaki and B. Ruf, Elliptic equations in R2 with nonlinearities in the critical growth range, Calc. Var. Partial Differential Equations, 4 (1996), no. 2, 203–203.

G.M. Figueiredo and F.B.M. Nunes, Existence of positive solutions for a class of quasilinear elliptic problems with exponential growth via the Nehari manifold method, Rev. Mat. Complut. 32 (2019), 1–18.

A. Fiscella and P. Pucci, (p, N ) equations with critical exponential nonlinearities in RN , J. Math. Anal. Appl. (2019), 123379.

S. Goyal and K. Sreenadh, Lack of coercivity for N -laplace equation with critical exponential nonlinearities in a bounded domain, Electron. J. Differential Equations, 2014 (2014), no. 15, 1–22.

S. Goyal and K. Sreenadh, The Nehari manifold approach for N -Laplace equation with singular and exponential nonlinearities in RN , Commun. Contemp. Math. 17(03) (2015), 1450011.

J. Jiang and Y. Yang, The nodal solution for a problem involving the logarithmic and exponential nonlinearities, Complex Var. Elliptic Equ. 2022, pp. 1–22.

J.A. Leon Tordecilla, A class of quasilinear elliptic equations with singular and exponential terms, Complex Var. Elliptic Equ. 2022, pp. 1–16.

Q. Li and Z. Yang, Multiple solutions for N -Kirchhoff type problems with critical exponential growth in RN , Nonlinear Anal. 117 (2015), 159–168.

J. Moser, A sharp form of an inequality by N. Trudinger, Indiana Univ. Math. J. 20 (1971), no. 11, 1077–1092.

D. Mugnai and N. Papageorgiou, Wang’s multiplicity result for superlinear (p, q)equations without the Ambrosetti–Rabinowitz condition, Trans. Amer. Math. Soc. 366 (2014), no. 9, 4919–4937.

K. Perera and I. Sim, Positive solutions of semipositone elliptic problems with critical Trudinger–Moser nonlinearities, Topol. Methods Nonlinear Anal. 55 (2020), no. 1, 243–255.

N.S. Trudinger, On imbeddings into Orlicz spaces and some applications, J.Math.Mech. 17 (1967), no. 5, 473–483.

Y. Wang, J. Yang and Y. Zhang, Quasilinear elliptic equations involving the N Laplacian with critical exponential growth in RN , Nonlinear Anal. 71 (2009), no. 12, 6157–6169.

Q. Yang and C. Bai, Sign-changing solutions for a class of fractional Kirchhoff-type problem with logarithmic nonlinearity, AIMS Math. 6 (2021), no. 1, 868–881.

Y. Yang and K. Perera, (N, q)-Laplacian problems with critical Trudinger–Moser nonlinearities, Ann. Sc. Norm. Super. Pisa Cl. Sci. 16 (2016), no. 2, 1123–1138.

Y. Zhang and Y. Yang, Existence result for fractional problems with logarithmic and critical exponential nonlinearities, arXiv 2105 (2021), 10858, preprint.

Y. Zhang and Y. Yang, Positive solutions for semipositone (p, N )-Laplacian problems with critical Trudinger–Moser nonlinearities, Rev. Mat. Complut. 2022, pp. 1–14.

Downloads

  • PREVIEW
  • FULL TEXT

Published

2024-09-15

How to Cite

1.
JIANG, Jialin and YANG, Yang. Existence of solutions for the $(p,N)$-Laplacian equation with logarithmic and critical exponential nonlinearities. Topological Methods in Nonlinear Analysis. Online. 15 September 2024. Vol. 64, no. 1, pp. 243 - 256. [Accessed 5 July 2025]. DOI 10.12775/TMNA.2023.054.
  • ISO 690
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

Vol 64, No 1 (September 2024)

Section

Articles

License

Copyright (c) 2024 Jialin Jiang, Yang Yang

Creative Commons License

This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.

Stats

Number of views and downloads: 0
Number of citations: 0

Search

Search

Browse

  • Browse Author Index
  • Issue archive

User

User

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo

Newsletter

Subscribe Unsubscribe
Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop