BMO and Dirichlet problem for semi-linear equations in the plane
DOI:
https://doi.org/10.12775/TMNA.2023.052Keywords
BMO, bounded mean oscillation, FMO, finite mean oscillation, Dirichlet problem, semi-linear Beltrami equations, semi-linear Poisson type equations, generalized analytic functions with sources, generalized harmonic functions with sourcesAbstract
First we study the Dirichlet problem ${\rm{Re}}\omega(z)\to\varphi(\zeta)$ as $z\to\zeta,$ $z\in D,\zeta\in \partial D,$ with continuous boundary data $\varphi \colon \partial D\to\mathbb R$ for semi-linear Beltrami equations $\omega_{\overline{z}}-\mu(z) \omega_z=\sigma (z)q({\rm Re}\omega(z))$. We assume here that $D$ is an arbitrary bounded domain of the complex plane $\mathbb C$, which is either simply connected or has no boundary components degenerated to a single point, and that the equations are locally uniform elliptic with possible singularities at the boundary. For $\sigma\in L_p(D)$, $p> 2$, with compact support, and continuous $q\colon \mathbb R\to\mathbb C$, $q(t)/t\to 0$ as $t\to\infty$, we establish a series of effective criteria for existence of solutions of the Dirichlet problem in terms of BMO, FMO, Calderon-Zygmund, Lehto and Orlicz integral means. We also establish representation and regularity of these solutions. Then, we prove existence, representation and regularity of weak solutions of the Dirichlet problem $u(z)\to\varphi(\zeta)$ as $z\to\zeta,$ $z\in D,\zeta\in \partial D,$ to semi-linear Poisson type equations ${\rm div} [A(z)\nablau(z)] = g(z)Q(u(z))$ for $g\in L_p(D)$, $p> 1$, with compact support, and continuous $Q:\mathbb R\to\mathbb R$, $Q(t)/t\to 0$ as $t\to\infty$. We also assume here conditions on the matrix coefficients $A(z)$ guaranteing locally uniform ellipticity of these equations. Finally, we give examples of possible applications of the obtained results to various semi-linear equations of the mathematical physics in anisotropic and inhomogeneous media.References
L. Ahlfors, Lectures on Quasiconformal Mappings, New York, Van Nostrand, 1966.
L.V. Ahlfors and L. Bers, Riemann’s mapping theorem for variable metrics, Ann. Math. 72 (1960), no. 2, 385–404.
C. Andreian Cazacu, On the length-area dilatation, Complex Variables, Theory Appl. 50 (2005), no. 7–11, 765–776.
K. Astala, T. Iwaniec and G.J. Martin, Elliptic Differential Equations and Quasiconformal Mappings in the Plane, Princeton Math. Ser., vol. 48, Princeton, Princeton Univ. Press, 2009.
G.I. Barenblatt, Ja. B. Zel’dovic, V.B. Librovich and G.M. Mahviladze, Matematicheskaya Teoriya Goreniya i Vzryva, “Nauka”, Moscow, 1980 (Russian); English transl.: The Mathematical Theory of Combustion and Explosions, New York, Consult, Bureau, 1985.
B. Bojarski, Generalized solutions of a system of differential equations of the first order of the elliptic type with discontinuous coefficients, Mat. Sb. (N.S.) 43 (85) (1958), no. 4, 451–503; transl.: Report of Univ. of Jyväskylä, Dept. Math. and Stat., vol. 118, Univ. of Jyväskylä, 2009.
B. Bojarski, V. Gutlyanskiı̆, O. Martio and V. Ryazanov, Infinitesimal Geometry of Quasiconformal and Bi-Lipschitz Mappings in the Plane, EMS Tracts in Mathematics, vol. 19, Zürich, European Mathematical Society (EMS), 2013.
B. Bojarski, V. Gutlyanskiı̆ and V. Ryazanov, On integral conditions for the general Beltrami equations, Complex Anal. Oper. Theory 5 (2011), no. 3, 835–845.
B. Bojarski, V. Gutlyanskiı̆ and V. Ryazanov, On existence and representation of solutions for general degenerate Beltrami equations, Complex Var. Elliptic Equ. 59 (2014), no. 1, 67–75.
H. Brézis and L. Nirenberg, Degree theory and BMO. I. Compact manifolds without boundaries, Selecta Math. (N.S.) 1 (1995), no. 2, 197–263.
F. Chiarenza, M. Frasca and P. Longo, W 2,p -solvability of the Dirichlet problem for nondivergence elliptic equations with VMO coefficients, Trans. Amer. Math. Soc. 336 (1993), no. 2, 841–853.
J.I. Diaz, Nonlinear Partial Differential Equations and Free Boundaries, vol. I. Elliptic equations, Research Notes in Mathematics, vol. 106, Boston, Pitman, 1985.
N. Dunford and J.T. Schwartz, Linear Operators, I. General Theory, Pure and Applied Mathematics, vol. 7, New York, London, Interscience Publishers, 1958.
V. Gutlyanskiı̆, O. Martio, T. Sugawa and M. Vuorinen, On the degenerate Beltrami equation, Trans. Amer. Math. Soc. 357 (2005), no. 3, 875–900.
V. Gutlyanskiı̆, O. Nesmelova and V. Ryazanov, On a model semilinear elliptic equation in the plane, J. Math. Sci., New York 220 (2017), no. 5, 603–614; transl.: from Ukr. Mat. Visn. 13 (2016), no. 1, 91–105.
V. Gutlyanskiı̆, O. Nesmelova and V. Ryazanov, On quasiconformal maps and semilinear equations in the plane, J. Math. Sci., New York 229 (2018), no. 1, 7–29; transl. from. Ukr. Mat. Visn. 14 (2017), no. 2, 161–191.
V. Gutlyanskiı̆, O. Nesmelova and V. Ryazanov, To the theory of semi-linear equations in the plane, J. Math. Sci., New York 242 (2019),no. 6, 833–859; transl. from Ukr. Mat. Visn., 16 (2019), no. 1, 105–140.
V. Gutlyanskiı̆, O. Nesmelova and V. Ryazanov, On a quasilinear Poisson equation in the plane, Anal. Math. Phys. 10 (2020), no. 1, paper no. 6.
V. Gutlyanskiı̆, O. Nesmelova, V. Ryazanov and E. Yakubov, On the Hilbert problem for semi-linear Beltrami equations, J. Math. Sci., New York 270 (2023), no. 3, 428–448; transl. from Ukr. Mat. Visn. 19 (2022), no. 4, 489–516.
V. Gutlyanskiı̆, O. Nesmelova, V. Ryazanov and A. Yefimushkin, Logarithmic potential and generalized analytic functions, J. Math. Sci., New York 256 (2021), no. 6, 735–752; transl. from Ukr. Mat. Visn. 18 (2021), no. 1, 12–36.
V. Gutlyanskiı̆, V. Ryazanov, E. Sevostyanov and E. Yakubov, BMO and Dirichlet problem for degenerate Beltrami equation, J. Math. Sci., New York 268 (2022), no. 2, 157–177; transl. from Ukr. Mat. Visn. 19 (2021), no. 3, 327–354.
V. Gutlyanskiı̆, V. Ryazanov, U. Srebro and E. Yakubov, The Beltrami Equation: A Geometric Approach, Developments in Mathematics, vol. 26, Springer, Berlin, 2012.
J. Heinonen, T. Kilpeläinen and O. Martio, Nonlinear Potential Theory of Degenerate Elliptic Equations, Oxford Mathematical Monographs, Oxford Science Publications, The Clarendon Press, Oxford University Press, New York, 1993.
A.A. Ignat’ev and V.I. Ryazanov, Finite mean oscillation in the mapping theory, Ukr. Mat. Visn. 2 (2005), no. 3, 395–417, 443; transl.: Ukrainian Math. Bull. 2 (2005), no. 3, 403–424.
T. Iwaniec, Regularity of solutions of certain degenerate elliptic systems of equations that realize quasiconformal mappings in n-dimensional space, Differential and Integral Equations. Boundary Value Problems (1979), pp. 97–111.
T. Iwaniec, Regularity theorems for solutions of partial differential equations for quasiconformal mappings in several dimensions, Dissertationes Math. (Rozprawy Mat.), vol. 198, 1982.
T. Iwaniec and C. Sbordone, Riesz transforms and elliptic PDEs with VMO coefficients, J. Anal. Math. 74 (1998), 183–212.
F. John and L. Nirenberg, On functions of bounded mean oscillation, Comm. Pure Appl. Math. 14 (1961), 415–426.
P. Koosis, Introduction to H p Spaces, Cambridge Tracts in Mathematics, vol. 115, Cambridge Univ. Press, Cambridge, 1998.
O. Lehto, Homeomorphisms with a prescribed dilatation, Lecture Notes in Math. 118 (1968), 58–73.
O. Lehto and K.J. Virtanen, Quasiconformal Mappings in the Plane, Springer–Verlag, Berlin, Heidelberg, 1973.
J. Leray and J. Schauder, Topologie et equations fonctionnelles, Ann. Sci. Ecole Norm. Sup. 51 (1934), no. 3, 45–78.
O. Martio, V. Ryazanov and M. Vuorinen, BMO and injectivity of space quasiregular mappings, Math. Nachr. 205 (1999), 149–161.
O. Martio, V. Ryazanov, U. Srebro and E. Yakubov, Moduli in Modern Mapping Theory, Springer Monographs in Mathematics, Springer, New York, 2009.
J. Mawhin, Leray–Schauder continuation theorems in the absence of a priori bounds, Topol. Methods Nonlinear Anal. 9 (1997), no. 1, 179–200.
V.G. Maz’ja, Sobolev Spaces, Springer–Verlag, Berlin, 1985.
R. Nevanlinna, Eindeutige analytische Funktionen, 2, Aufl. Reprint., German, Die Grundlehren der mathematischen Wissenschaften. Band, vol. 46, Springer–Verlag, Berlin, Heidelberg, New York, 1974.
D.K. Palagachev, Quasilinear elliptic equations with VMO coefficients, Trans. Amer. Math. Soc. 347 (1995), no. 7, 2481–2493.
S.I. Pohozaev, Concerning an equation in the theory of combustion, Mat. Zametki 88 (2010), no. 1, 53–62; English transl.: Math. Notes 88 (2010), no. 1, 48–56.
D. Pompeiu, Sur une classe de fonctions d’une variable complexe, Rend. Circolo mat. Palermo 33 (1912), 108–113; 35 (1913), 277–281.
M.A. Ragusa, Elliptic boundary value problem in vanishing mean oscillation hypothesis, Comment. Math. Univ. Carolin. 40 (1999), no. 4, 651–663.
M.A. Ragusa and A. Tachikawa, Partial regularity of the minimizers of quadratic functionals with VMO coefficients, J. Lond. Math. Soc. (2) 72 (2005), no. 3, 609–620.
Th. Ransford, Potential Theory in the Complex Plane, London Mathematical Society Student Texts, vol. 28, Univ. Press, Cambridge, 1995.
H.M. Reimann and T. Rychener, Funktionen Beschränkter Mittlerer Oscillation, Lecture Notes in Math., vol. 487, Springer, German, 1975.
V. Ryazanov, On Hilbert and Riemann problems for generalized analytic functions and applications, Anal. Math. Phys. 11 (2021), paper no. 5.
V. Ryazanov, Dirichlet problem with measurable data in rectifiable domains, Filomat 36 (2022), no. 6, 2119–2127.
V. Ryazanov, On Hilbert and Poincaré problems for semi-linear equations in rectifiable domains, Topol. Methods Nonlinear Anal. 62 (2023), no. 1, 1–24.
V.I. Ryazanov and R.R. Salimov, Weakly planar spaces and boundaries in the theory of mappings, Ukr. Mat. Visn. 4 (2007), no. 2, 199–234, 307; English transl.: Ukr. Math. Bull. 4 (2007), no. 2, 199–234
V. Ryazanov, U. Srebro and E. Yakubov, BMO-quasiconformal mappings, J. Anal. Math. 83 (2001), 1–20.
V. Ryazanov, U. Srebro and E. Yakubov, Finite mean oscillation and the Beltrami equation, Israel Math. J. 153 (2006), 247–266.
V. Ryazanov, U. Srebro and E. Yakubov, On the theory of the Beltrami equation, Ukr. Math. J. 58 (2006), no. 11, 1786–1798.
V. Ryazanov, U. Srebro and E. Yakubov, Integral conditions in the theory of the Beltrami equations, Complex Var. Elliptic Equ. 57 (2012), no. 12, 1247–1270.
E.B. Saff and V. Totik, Logarithmic Potentials with External Fields, Grundlehren der Mathematischen Wissenschaften, vol. 316, Springer, Berlin, 1997.
D. Sarason, Functions of vanishing mean oscillation, Trans. Amer. Math. Soc. 207 (1975), 391–405.
S.L. Sobolev, Applications of Functional Analysis in Mathematical Physics, Transl. of Math. Mon., vol. 7, AMS, Providence, R.I., 1963.
I.N. Vekua, Generalized Analytic Functions, Pergamon Press, London, Paris, Frankfurt; Addison-Wesley Publishing Co., Inc., Reading, Mass., 1962.
N. Wiener, The Dirichlet problem, Mass. J. of Math. 3 (1924), 129–146.
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Vladimir Gutlyanskiĭ, Olga Nesmelova, Vladimir Ryazanov, Eduard Yakubov
This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.
Stats
Number of views and downloads: 0
Number of citations: 0