Skip to main content Skip to main navigation menu Skip to site footer
  • Login
  • Language
    • English
    • Język Polski
  • Menu
  • Home
  • Current
  • Online First
  • Archives
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  • Login
  • Language:
  • English
  • Język Polski

Topological Methods in Nonlinear Analysis

Neumann-type boundary value problem associated with Hamiltonian systems
  • Home
  • /
  • Neumann-type boundary value problem associated with Hamiltonian systems
  1. Home /
  2. Archives /
  3. Vol 64, No 1 (September 2024) /
  4. Articles

Neumann-type boundary value problem associated with Hamiltonian systems

Authors

  • Natnael Gezahegn Mamo https://orcid.org/0000-0002-3765-103X

DOI:

https://doi.org/10.12775/TMNA.2023.051

Keywords

Hamiltonian systems, Neumann boundary conditions, lower/upper solutions, critical point theory, Nagumo condition

Abstract

The aim of this paper is to investigate some multiplicity results for a Hamiltonian system with Neumann-type boundary conditions. A critical point theory is applied in order to show that the the problem has multiple solutions. The crucial part of this paper is that, in contrast to periodic problems where the Poincaré-Birkhoff Theorem has a significant role, no twist condition is required.

References

F.H. Clarke and I. Ekeland, Nonlinear oscillations and boundary value problems for Hamiltonian systems, Arch. Rational Mech. Anal. 78 (1982), 315–333.

A. Fonda, M. Garzón and A. Sfecci, An extension of the Poincaré–Birkhoff Theorem coupling twist with lower and upper solutions, J. Math. Anal. Appl. 528 (2023), paper no. 127599, 33 pp.

A. Fonda and P. Gidoni, Coupling linearity and twist: an extension of the Poincaré–Birkhoff Theorem for Hamiltonian systems, NoDEA Nonlin. Differential Equations Appl. 27 (2020), paper no. 55, 26 pp.

A. Fonda, G. Klun, F. Obersnel and A. Sfecci, On the Dirichlet problem associated with bounded perturbations of positively-(p, q)-homogeneous Hamiltonian systems, J. Fixed Point Theory Appl. 24 (2022), paper no. 66, 32 pp.

A. Fonda, G. Klun and A. Sfecci, Well-ordered and non-well-ordered lower and upper solutions for periodic planar systems, Adv. Nonlinear Stud. 21 (2021), 397–419.

A. Fonda, N.G. Mamo, F. Obersnel and A. Sfecci, Multiplicity results for Hamiltonian systems with Neumann-type boundary conditions, NoDEA Nonlinear Differential Equations Appl. 31 (2024), paper no. 31, 30 pp.

A. Fonda and R. Ortega, A two-point boundary value problem associated with Hamiltonian systems on a cylinder, Rend. Circ. Mat. Palermo 72 (2023), 3931–3947.

A. Fonda and R. Toader, A dynamical approach to lower and upper solutions for planar systems, Discrete Contin. Dynam. Systems 41 (2021), 3683–3708.

A. Fonda and R. Toader, Subharmonic solutions of weakly coupled Hamiltonian systems, J. Dynam. Differential Equations 35 (2023), 2337–2353.

A. Fonda and W. Ullah, Periodic solutions of Hamiltonian systems coupling twist with generalized lower/upper solutions, J. Differential Equations 379 (2024), 148–174.

A. Fonda and A.J. Ureña, A higher dimensional Poincaré–Birkhoff theorem for Hamiltonian flows, Ann. Inst. H. Poincaré Anal. Non Linéaire 34 (2017), 679–698.

P. Gidoni, Existence of a periodic solution for superlinear second order ODEs, J. Differential Equations 345 (2023), 401–417.

J. Mawhin and M. Willem, Critical Point Theory and Hamiltonian Systems, Springer, New York, 1989.

M. Nagumo, Über die Differentialgleichung y 00 = f (x, y, y 0 ), Proc. Phys.-Math. Soc. Japan 19 (1937), 861–866.

A. Szulkin, A relative category and applications to critical point theory for strongly indefinite functionals, Nonlinear Anal. 15 (1990), 725–739.

Downloads

  • PREVIEW
  • FULL TEXT

Published

2024-09-15

How to Cite

1.
MAMO, Natnael Gezahegn. Neumann-type boundary value problem associated with Hamiltonian systems. Topological Methods in Nonlinear Analysis. Online. 15 September 2024. Vol. 64, no. 1, pp. 151 - 162. [Accessed 29 June 2025]. DOI 10.12775/TMNA.2023.051.
  • ISO 690
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

Vol 64, No 1 (September 2024)

Section

Articles

License

Copyright (c) 2024 Natnael Gezahegn Mamo

Creative Commons License

This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.

Stats

Number of views and downloads: 0
Number of citations: 0

Search

Search

Browse

  • Browse Author Index
  • Issue archive

User

User

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo

Newsletter

Subscribe Unsubscribe
Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop