Normal forms of parabolic logarithmic transseries
DOI:
https://doi.org/10.12775/TMNA.2023.039Keywords
Formal normal forms, normalizations, logarithmic transseries, parabolic fixed point, residual invariant, fixed point theorems, fixed point theoryAbstract
We give formal normal forms for parabolic logarithmic transseries $f=z+\dots $, with respect to parabolic logarithmic normalizations. Normalizations are given algorithmically, using fixed point theorems, as limits of Picard's sequences in appropriate complete metric spaces, in contrast to transfinite \emph{term-by-term} eliminations described in former works. Furthermore, we give the explicit formula for the residual coefficient in the normal form and show that, in the larger logarithmic class, we can even eliminate the residual term from the normal form.References
I. Aniceto, G. Başar and R. Schiappa, A primer on resurgent transseries and their asymptotics, Phys. Rep. 809 (2019), 1–135.
M. Aschenbrenner, L. van den Dries, and J. van der Hoeven, Towards a model theory for transseries, Notre Dame J. Form. Log. 54 (2013), no. 3–4, 279–310.
L. Carleson and T.W. Gamelin, Complex Dynamics, Universitext: Tracts in Mathematics, Springer–Verlag, New York, 1993.
H. Dulac, Sur les cycles limites, Bull. Soc. Math. France 51 (1923), 45–188.
J. Écalle, Introduction aux Fonctions Analysables et Preuve Constructive de la Conjecture de Dulac, Actualités Mathématiques, Hermann, Paris, 1992.
Y. Il’yashenko, Limit cycles of polynomial vector fields with nondegenerate singular points on the real plane, Funct. Anal. Appl. 18 (1984), no. 3, 199–209.
Y. Il’yashenko, Finiteness theorems for limit cycles, Translations of Mathematical Monographs, vol. 94, American Mathematical Society, Providence, RI, 1991.
Y. Il’yashenko and S. Yakovenko, Lectures on analytic differential equations, Graduate Studies in Mathematics, vol. 86, American Mathematical Society, Providence, RI, 2008.
F. Loray, Analyse des Séries Divergentes, Mathématiques pour le 2e cycle, vol. Quelques Aspects des Mathématiques Actuelles, Ellipses, 1998.
F. Loray, Pseudo-Groupe d’Une Singularité de Feuilletage Holomorphe en Dimension Deux, Prépublication IRMAR, 2005.
J. Milnor, Dynamics in One Complex Variable, third ed., Annals of Mathematics Studies, vol. 160, Princeton University Press, Princeton, NJ, 2006.
P. Mardešić and M. Resman, Analytic moduli for parabolic Dulac germs, Russian Math. Surveys 76 (2021), no. 3, 389–460
P. Mardešić, M. Resman, J.-P. Rolin and V. Županović, Normal forms and embeddings for power-log transseries, Adv. Math. 303 (2016), 888–953.
P. Mardešić, M. Resman, J.-P. Rolin and V. Županović, The Fatou coordinate for parabolic Dulac germs, J. Differential Equations 266 (2019), no. 6, 3479–3513.
P. Mardešić, M. Resman, J.-P. Rolin and V. Županović, Tubular neighborhoods of orbits of power-logarithmic germs, J. Dynam. Differential Equations 33 (2021), 395–443.
B.H. Neumann, On ordered division rings, Trans. Amer. Math. Soc. 66 (1949), 202–252.
D. Peran, Normal forms for transseries and Dulac germs, doctoral thesis, University of Zagreb, 2021, https://urn.nsk.hr/urn:nbn:hr:217:394321.
D. Peran, Normalizations of strongly hyperbolic logarithmic transseries and complex Dulac germs, Anal. Math. Phys. 13 (2023), 66, DOI: 10.1007/s13324-023-00830-w.
D. Peran, J.-P. Rolin, M. Resman and T. Servi, Linearization of complex hyperbolic Dulac germs, J. Math. Anal. Appl. 508 (2022), no. 1, 1–27, DOI: 10.1016/j.jmaa.2021.125833.
D. Peran, J.-P. Rolin, M. Resman and T. Servi, Normal forms of hyperbolic logarithmic transseries, J. Differential Equations 348 (2023), 154–190, DOI: 10.1016/j.jde.2022.12.002.
R. Roussarie, Bifurcation of planar vector fields and Hilbert’s sixteenth problem, Progress in Mathematics, vol. 164, Birkhäuser Verlag, Basel, 1998.
L. van den Dries, A. Macintyre and D. Marker, Logarithmic-exponential series, Proceedings of the International Conference “Analyse & Logique” (Mons, 1997), vol. 111, 2001, pp. 61–113.
T. Xiang and S.G. Georgiev, Noncompact-type Krasnosel’skiı̆ fixed-point theorems and their applications, Math. Methods Appl. Sci. 39 (2016), no. 4, 833–863.
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Dino Peran
This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.
Stats
Number of views and downloads: 0
Number of citations: 0