Skip to main content Skip to main navigation menu Skip to site footer
  • Login
  • Language
    • English
    • Język Polski
  • Menu
  • Home
  • Current
  • Online First
  • Archives
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  • Login
  • Language:
  • English
  • Język Polski

Topological Methods in Nonlinear Analysis

Partial minimization over the Nehari set and applications to elliptic equations
  • Home
  • /
  • Partial minimization over the Nehari set and applications to elliptic equations
  1. Home /
  2. Archives /
  3. Vol 63, No 2 (June 2024) /
  4. Articles

Partial minimization over the Nehari set and applications to elliptic equations

Authors

  • Omar Cabrera Chavez

DOI:

https://doi.org/10.12775/TMNA.2023.031

Keywords

Elliptic partial differential equatio, logarithmic Choquard equation, nonlinear Schrödinger equation, Nehari manifold, ground states

Abstract

We present a general scheme to find variationally characterized critical points of a functional $I\colon H \to \mathbb{R}$ on a Hilbert space $H$ with hypothesis where the usual Nehari method is not directly applicable. These critical points arise as minima of $I$ over a suitable subset of the associated Nehari set and are obtained with the aid of fibering methods. Moreover, we derive a comparison result with mountain pass critical values. The abstract results will be applied to classes of logarithmic Choquard and nonlinear Schrödinger equations.

References

H. Berestycki and P.-L. Lions, Nonscalar field equations, I Existence of a ground state, Arch. Ration. Mech. Anal. 82 (1983), 313–346.

H. Berestycki and P.-L. Lions, Nonlinear scalar field equations, II existence of infinitely many solutions, Arch. Ration. Mech. Anal. 82 (1983), 347–375.

H. Berestycki and L. Nirenberg, On the method of moving planes andthe sliding method, Bol. Soc. Bras. Mat 22 (1991), 1–37.

P. Choquard, J. Stubbe and M. Vuffray, Stationary solutions of the Schrödinger–Newton model – an ODE approach, Differential Integral Equ. 21 (2008), no. 7–8, 665–679.

S. Cingolani and T. Weth, On the planar Schrödinger–Poisson system, Ann. Int. H. Poincaré Anal. Non Linéaire 33 (2016), 169–197.

M. Du and T. Weth, Ground states and high energy solutions of the planar Schrödinger–Poisson system, Nonlinearity 30 (2017), 3492–3515.

I. Ekeland, On the variational principle, J. Math. Anal. Appl. 47 (1974), no. 2, 324–353.

N. Garofalo and F.-H. Lin, Unique continuation for elliptic operators: A geometricvariational approach, Comm. Pure Appl. Math. 40 (1987), 347–366.

L. Jeanjean and K. Tanaka, A remark on least energy solutions in RN , Proc. Amer. Math. Soc. 131 (2003), 2399–2408.

P.-L. Lions, The concentration-compactness principle in the calculus of variations. The locally compact case I, Ann. Inst. H. Poincaré Anal. Non Linéaire 1 (1984), 109–145.

Z. Liu and Z.Q. Wang, On the Ambrosetti–Rabinowitz superlinear condition, Adv. Nonlinear Stud. 4 (2004), no. 4, 563–574.

J. Mederski, Nonradial solutions of nonlinear scalar field equations, Nonlinearity 33 (2020), no. 12, 6349–6380.

V. Moroz and J. Van Schaftingen, A guide to the Choquard equation, J. Fixed Point Theory Appl. 19 (2017), 773–813.

Z. Nehari, On a class of nonlinear second-order differential equations, Trans. Amer. Math. Soc. 95 (1960), no. 1, 101–123.

Z. Nehari, Characteristic values associated with a class of non-linear second-order differential equations, Acta Math. 105 (1961), 141–175.

J. Stubbe, Bound states of two-dimensional Schrödinger–Newton equations, (2008), arXiv: 0807.4059v1.

A. Szulkin and T. Weth, The method of Nehari manifold, Handbook of Nonconvex Analysis and Applications, Int. Press, 2010, pp. 597–632.

Downloads

  • PREVIEW
  • FULL TEXT

Published

2024-06-16

How to Cite

1.
CHAVEZ, Omar Cabrera. Partial minimization over the Nehari set and applications to elliptic equations. Topological Methods in Nonlinear Analysis. Online. 16 June 2024. Vol. 63, no. 2, pp. 559 - 593. [Accessed 30 December 2025]. DOI 10.12775/TMNA.2023.031.
  • ISO 690
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

Vol 63, No 2 (June 2024)

Section

Articles

License

Copyright (c) 2024 Omar Cabrera Chavez

Creative Commons License

This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.

Stats

Number of views and downloads: 0
Number of citations: 0

Search

Search

Browse

  • Browse Author Index
  • Issue archive

User

User

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo

Newsletter

Subscribe Unsubscribe
Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop