Skip to main content Skip to main navigation menu Skip to site footer
  • Login
  • Language
    • English
    • Język Polski
  • Menu
  • Home
  • Current
  • Online First
  • Archives
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  • Login
  • Language:
  • English
  • Język Polski

Topological Methods in Nonlinear Analysis

A characterization of the family of iterated nonexpansive mappings under every renorming
  • Home
  • /
  • A characterization of the family of iterated nonexpansive mappings under every renorming
  1. Home /
  2. Archives /
  3. Vol 63, No 1 (March 2024) /
  4. Articles

A characterization of the family of iterated nonexpansive mappings under every renorming

Authors

  • Víctor Pérez-García https://orcid.org/0000-0002-9270-1183
  • Francisco Eduardo Castillo-Santos https://orcid.org/0000-0002-7949-5194

DOI:

https://doi.org/10.12775/TMNA.2024.006

Keywords

Renormings, fixed point, iterated nonexpansive mappings, quasi-nonexpansive mappings

Abstract

We characterize the family of iterated nonexpansive mappings that are stable under every renorming. The family of iterated nonexpansive mappings contains the family of nonexpansive mappings, it also contains quasi-nonexpansive and Suzuki's (C)-type mappings with fixed points, among others. We also give the corresponding characterizations for quasi-nonexpansive and some Suzuki's (C)-type mappings with fixed points.

References

J.R. Acosta-Portilla, C.A. Hernández Linares and V. Pérez Garcı́a, About some families of nonexpansive mappings with respect to renorming, J. Funct. Spaces 2016 (2016), Art. ID 9310515, 9 pp.

A. Betiuk-Pilarska and T. Domı́nguez Benavides, The fixed point property for some generalized nonexpansive mappings and renormings, J. Math. Anal. Appl. 429 (2015), no. 2, 800–813.

A. Betiuk-Pilarska and T. Domı́nguez Benavides, Fixed points for nonexpansive mappings and generalized nonexpansive mappings on Banach lattices, Pure Appl. Funct. Anal. 1 (2016), no. 3, 343–359.

A. Betiuk-Pilarska, T. Domı́nguez Benavides and P.L. Ramı́rez, Fixed points for Suzuki type mappings by means of “ultra”-techniques, J. Nonlinear Convex Anal. 18 (2017), no. 10, 1753–1770.

T. Domı́nguez Benavides, A renorming of some nonseparable Banach spaces with the fixed point property, J. Math. Anal. Appl. 350 (2009), no. 2, 525–530.

T. Domı́nguez Benavides and E. Llorens-Fuster, Iterated nonexpansive mappings, J. Fixed Point Theory Appl. 20 (2018), no. 3, Art. 104, 18 pp.

T. Domı́nguez Benavides and S. Phothi, Porosity of the fixed point property under renorming, Fixed Point Theory and its Applications, Yokohama Publ., Yokohama, 2008, pp. 29–41.

T. Domı́nguez Benavides and S. Phothi, The fixed point property under renorming in some classes of Banach spaces, Nonlinear Anal. 72 (2010), no. 3–4, 1409–1416.

B. Gamboa de Buen and F. Núñez-Medina, A generalization of a renorming theorem by Lin and a new nonreflexive space with the fixed point property which is nonisomorphic to l1 , J. Math. Anal. Appl. 1 (2013), no. 405, 57–70.

K. Goebel and W.A. Kirk, Topics in metric fixed point theory, Cambridge Studies in Advanced Mathematics, vol. 28, Cambridge University Press, Cambridge, 1990.

C.A. Hernández-Linares, M.A. Japón and E. Llorens-Fuster, On the structure of the set of equivalent norms on `1 with the fixed point property, J. Math. Anal. Appl. 2 (2012), no. 387, 645–654.

E. Karapınar and K. Taş, Generalized (C)-conditions and related fixed point theorems, Comput. Math. Appl. 61 (2011), no. 11, 3370–3380.

P.-K. Lin, There is an equivalent norm on l1 that has the fixed point property, Nonlinear Anal. 68 (2008), no. 8, 2303–2308.

E. Llorens Fuster and E. Moreno Gálvez, The fixed point theory for some generalized nonexpansive mappings, Abstr. Appl. Anal. (2011), Art. ID 435686, 15 pp.

L. Piasecki, Classification of Lipschitz Mappings, Pure and Applied Mathematics (Boca Raton), vol. 307, CRC Press, Boca Raton, FL, 2014, x+224 pp.

T. Suzuki, Fixed point theorems and convergence theorems for some generalized nonexpansive mappings, J. Math. Anal. Appl. 340 (2008), no. 2, 1088–1095.

Downloads

  • PREVIEW
  • FULL TEXT

Published

2024-03-19

How to Cite

1.
PÉREZ-GARCÍA, Víctor and CASTILLO-SANTOS, Francisco Eduardo. A characterization of the family of iterated nonexpansive mappings under every renorming. Topological Methods in Nonlinear Analysis. Online. 19 March 2024. Vol. 63, no. 1, pp. 309 - 321. [Accessed 30 December 2025]. DOI 10.12775/TMNA.2024.006.
  • ISO 690
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

Vol 63, No 1 (March 2024)

Section

Articles

License

Copyright (c) 2024 Víctor Pérez-García, Francisco Eduardo Castillo-Santos

Creative Commons License

This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.

Stats

Number of views and downloads: 0
Number of citations: 0

Search

Search

Browse

  • Browse Author Index
  • Issue archive

User

User

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo

Newsletter

Subscribe Unsubscribe
Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop