Skip to main content Skip to main navigation menu Skip to site footer
  • Login
  • Language
    • English
    • Język Polski
  • Menu
  • Home
  • Current
  • Online First
  • Archives
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  • Login
  • Language:
  • English
  • Język Polski

Topological Methods in Nonlinear Analysis

Modular version of Goebel-Kirk theorem
  • Home
  • /
  • Modular version of Goebel-Kirk theorem
  1. Home /
  2. Archives /
  3. Vol 63, No 1 (March 2024) /
  4. Articles

Modular version of Goebel-Kirk theorem

Authors

  • Wojciech M. Kozlowski

DOI:

https://doi.org/10.12775/TMNA.2023.059

Keywords

Fixed point, asymptotically nonexpansive mapping, modular space, Banach space

Abstract

In this paper we prove a fixed point theorem for asymptotically nonexpansive mappings acting in modular spaces. This result generalises the 1972 fixed point theorem by K. Goebel and W.A. Kirk. In the process, we extend several other results (including the Milman-Pettis theorem) from the class of Banach spaces to the larger class of regular modular spaces.

References

A.A.N. Abdou and M.A. Khamsi, Fixed point theorems in modular vector spaces, J. Nonlinear Sci. Appl. 10 (2017), no. 8, 4046–4057.

F.E. Browder, Nonexpansive nonlinear operators in a Banach space, Proc. Nat. Acad. Sci. USA 54 (1965), 1041–1044.

K. Goebel, An elementary proof of the fixed point theorem of Browder and Kirk, Michigan Math. J. 16 (1969), 381–383.

K. Goebel and W.A. Kirk, A fixed point theorem for asymptotically nonexpansive mappings, Proc. Am. Math. Soc. 35 (1972), no. 1, 171–174.

K. Goebel and S. Reich, Uniform convexity, hyperbolic geometry, and nonexpansive mappings, Series of Monographs and Textbooks in Pure and Applied Mathematics, vol. 83, Dekker, New York and Basel, 1984, pp. 1 – 170.

D. Göhde, Zum prinzip der kontraktiven Abbildung, Math. Nachr. 30 (1965), 251–258.

M.A. Khamsi and W.M. Kozlowski, On asymptotic pointwise nonexpansive mappings in modular function spaces, J. Math. Anal. Appl. 380 (2011), 697–708.

M.A. Khamsi and W.M. Kozlowski, Fixed Point Theory in Modular Function Spaces, Springer Cham, Heidelberg, New York, Dordrecht, and London 2015, pp. 1–245.

M.A. Khamsi, W.M. Kozlowski and S. Reich, Fixed point theory in modular function spaces, Nonlinear Anal. 14 (1990), 935–953.

M.A. Khamsi, W.M. Kozlowski and C. Shutao, Some geometrical properties and fixed point theorems in Orlicz spaces, J. Math. Anal. Appl. 155 (1991), no. 2, 393–412.

S.J. Kilmer, W.M. Kozlowski and G. Lewicki, Best approximants in modular function spaces, J. Approx. Theory 63 (1990), no. 3, 338–367.

W.A. Kirk, A fixed point theorem for mappings which do not increase distances, Amer. Math. Monthly 72 (1965), 1004–1006.

W.A. Kirk, Asymptotic pointwise contractions, Plenary Lecture, the 8th International Conference on Fixed Point Theory and Its Applications, Chiang Mai University, Thailand, July 16–22, 2007.

W.A. Kirk and H.K. Xu, Asymptotic pointwise contractions, Nonlinear Anal. 69 (2008), 4706–4712.

W.M. Kozlowski, Modular Function Spaces, Series of Monographs and Textbooks in Pure and Applied Mathematics, vol. 122, Dekker, New York and Basel, 1988, pp. 1–252.

W.M. Kozlowski, On modulated topological vector spaces and applications, Bull. Austr. Math. Soc. 101 (2020), no. 2, 325–332.

W.M. Kozlowski, On modular approximants in sequential convergence spaces, Journal of Approx. Theory 264 (2021), paper no. 105535, 14 pp.

J. Musielak, Orlicz Spaces and Modular Spaces, Lecture Notes in Math., vol. 1034, Springer–Verlag, Berlin, Heidelberg, New York, and Tokyo 1983, pp. 1–222.

F. Nuray, On statistical convergence in modular vector spaces, Acta Math. Univ. Camenian. (N.S.) 91 (2022), no. 4, 377–391.

J. Schu, Weak and strong convergence to fixed points of asymptotically nonexpansive mappings, Bull. Austr. Math. Soc. 43 (1991), 153–159.

Downloads

  • PREVIEW
  • FULL TEXT

Published

2024-03-10

How to Cite

1.
KOZLOWSKI, Wojciech M. Modular version of Goebel-Kirk theorem. Topological Methods in Nonlinear Analysis. Online. 10 March 2024. Vol. 63, no. 1, pp. 99 - 114. [Accessed 30 December 2025]. DOI 10.12775/TMNA.2023.059.
  • ISO 690
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

Vol 63, No 1 (March 2024)

Section

Articles

License

Copyright (c) 2024 Wojciech M. Kozlowski

Creative Commons License

This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.

Stats

Number of views and downloads: 0
Number of citations: 0

Search

Search

Browse

  • Browse Author Index
  • Issue archive

User

User

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo

Newsletter

Subscribe Unsubscribe
Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop