Skip to main content Skip to main navigation menu Skip to site footer
  • Login
  • Language
    • English
    • Język Polski
  • Menu
  • Home
  • Current
  • Online First
  • Archives
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  • Login
  • Language:
  • English
  • Język Polski

Topological Methods in Nonlinear Analysis

Explicit models of ℓ_1-preduals and the weak* fixed point property in ℓ_1
  • Home
  • /
  • Explicit models of ℓ_1-preduals and the weak* fixed point property in ℓ_1
  1. Home /
  2. Archives /
  3. Vol 63, No 1 (March 2024) /
  4. Articles

Explicit models of ℓ_1-preduals and the weak* fixed point property in ℓ_1

Authors

  • Emanuele Casini https://orcid.org/0000-0003-3585-5052
  • Enrico Miglierina https://orcid.org/0000-0003-3493-8198
  • Łukasz Piasecki https://orcid.org/0000-0002-4996-8560

DOI:

https://doi.org/10.12775/TMNA.2023.009

Keywords

Nonexpansive mappings, w*-fixed point property, Lindenstrauss spaces

Abstract

We provide a concrete isometric description of all the preduals of $\ell_1$ for which the standard basis in $\ell_1$ has a finite number of $w^*$-limit points. Then, we apply this result to give an example of an $\ell_1$-predual $X$ such that its dual $X^*$ lacks the weak$^*$ fixed point property for nonexpansive mappings (briefly, $w^*$-FPP), but $X$ does not contain an isometric copy of any hyperplane $W_{\alpha}$ of the space $c$ of convergent sequences such that $W_\alpha$ is a predual of $\ell_1$ and $W_\alpha^*$ lacks the $w^*$-FPP. This answers a question left open in the 2017 paper of the present authors.

References

D.E. Alspach, A `1 -predual which is not isometric to a quotient of C(α), Banach Spaces (Mérida, 1992), Contemporary Mathematics, vol. 144, American Mathematical Society, Providence, RI, 1993, pp. 9–14.

E. Casini, E. Miglierina and L. Piasecki, Hyperplanes in the space of convergent sequences and preduals of `1 , Canad. Math. Bull. 58 (2015), 459–470.

E. Casini, E. Miglierina and L. Piasecki, Separable Lindenstrauss spaces whose duals lack the weak∗ fixed point property for nonexpansive mappings, Studia Math. 238 (2017), 1–16.

E. Casini, E. Miglierina and L. Piasecki, Weak∗ fixed point property and the space of affine functions, Proc. Amer. Math. Soc. 149 (2021), 1613–1620.

E. Casini, E. Miglierina, L. Piasecki and L. Veselý, Rethinking polyhedrality for Lindenstrauss spaces, Israel J. Math. 216 (2016), 355–369.

T. Domı́nguez Benavides and M.A. Japón, Fixed point properties and reflexivity in variable Lebesgue spaces, J. Funct. Anal. 280 (2021), paper no. 108896, 22 pp.

P.N. Dowling and C.J. Lennard, Every nonreflexive subspace of L1 [0, 1] fails the fixed point property, Proc. Amer. Math. Soc. 125 (1997), 443–446.

N. Dunford and J.T. Schwartz, Linear Operators. Part I. General Theory, reprint of the 1958 original, John Wiley & Sons, Inc., New York, 1988.

R. Durier and P.L. Papini, Polyhedral norms in an infinite dimensional space, Rocky Mountain J. Math. 23 (1993), 623–645.

V.P. Fonf, J. Lindenstrauss and R.R. Phelps, Infinite Dimensional Convexity, Handbook of the Geometry of Banach Spaces 1 (W.B. Johnson and J. Lindenstrauss, eds.), Elsevier Science, 2001, pp. 599–670.

V.P. Fonf and L. Veselý, Infinite-dimensional polyhedrality, Canad. J. Math. 56 (2004), 472–494.

I. Gasparis, On contractively complemented subspaces of separable L1 -preduals, Israel J. Math. 128 (2002), 77–92.

K. Goebel, Concise Course on Fixed Point Theorems, Yokohama Publishers, 2002.

K. Goebel and W.A. Kirk, Topics in Metric Fixed Point Theory, Cambridge University Press, 1990.

L.A. Karlovitz, On nonexpansive mappings, Proc. Amer. Math. Soc. 55 (1976), 321–325.

H.E. Lacey, The isometric theory of classical Banach spaces, Die Grundlehren der Mathematischen Wissenschaften, vol. 208, Springer–Verlag, New York, Heidelberg, 1974.

A.J. Lazar, Polyhedral Banach spaces and extensions of compact operators, Israel J. Math. 7 (1969), 357–364.

A.J. Lazar and J. Lindenstrauss, Banach spaces whose duals are L1 -spaces and their representing matrices, Acta Math. 126 (1971), 165–194.

J. Lindenstrauss, Extensions of compact operators, Mem. Amer. Math. Soc. 48 (1964).

J. Lindenstrauss and D.E. Wulbert, On the classification of the Banach spaces whose duals are L1 spaces, J. Funct. Anal. 4 (1969), 332–349.

B. Maurey, Points fixes des contractions de certain faiblement compacts de L1 , Seminaire d’Analyse Fonctionelle (Paris), Exposé, vol. VIII, École Polytechnique, Centre de Mathematiques, Paris, 1980–1981.

Z. Semadeni, Free compact convex sets, Bull. Acad. Polon. Sci. Sér Sci. Math. Astronom. Phys. 13 (1964), 141–146.

M. Zippin, On some subspaces of Banach spaces whose duals are L1 spaces, Proc. Amer. Math. Soc. 23 (1969), 378–385.

M. Zippin, Correction to “On some subspaces of Banach spaces whose duals are L1 spaces”, Proc. Amer. Math Soc. 146 (2018), 5257–5262.

Downloads

  • PREVIEW
  • FULL TEXT

Published

2024-03-10

How to Cite

1.
CASINI, Emanuele, MIGLIERINA, Enrico and PIASECKI, Łukasz. Explicit models of ℓ_1-preduals and the weak* fixed point property in ℓ_1. Topological Methods in Nonlinear Analysis. Online. 10 March 2024. Vol. 63, no. 1, pp. 39 - 51. [Accessed 30 December 2025]. DOI 10.12775/TMNA.2023.009.
  • ISO 690
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

Vol 63, No 1 (March 2024)

Section

Articles

License

Copyright (c) 2024 Emanuele Casini, Enrico Miglierina, Łukasz Piasecki

Creative Commons License

This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.

Stats

Number of views and downloads: 0
Number of citations: 0

Search

Search

Browse

  • Browse Author Index
  • Issue archive

User

User

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo

Newsletter

Subscribe Unsubscribe
Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop