Skip to main content Skip to main navigation menu Skip to site footer
  • Login
  • Language
    • English
    • Język Polski
  • Menu
  • Home
  • Current
  • Online First
  • Archives
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  • Login
  • Language:
  • English
  • Język Polski

Topological Methods in Nonlinear Analysis

Multiplicity and concentration of positive solutions to the double phase Kirchhoff type problems with critical growth
  • Home
  • /
  • Multiplicity and concentration of positive solutions to the double phase Kirchhoff type problems with critical growth
  1. Home /
  2. Archives /
  3. Vol 63, No 2 (June 2024) /
  4. Articles

Multiplicity and concentration of positive solutions to the double phase Kirchhoff type problems with critical growth

Authors

  • Jie Yang
  • Lintao Liu
  • Fengjuan Meng

DOI:

https://doi.org/10.12775/TMNA.2023.026

Keywords

(p,q) Kirchhoff type problems, concentration, Nehari manifold, Lusternik--Schnirelmann theory, critical growth

Abstract

The aim of this paper is to study the multiplicity and concentration of positive solutions to the $(p,q)$ Kirchhoff-type problems involving a positive potential and a continuous nonlinearity with critical growth at infinity. Applying penalization techniques, truncation methods and the Lusternik-Schnirelmann theory, we investigate a relationship between the number of positive solutions and the topology of the set where the potential $V$ attains its minimum values.

References

R.A. Adams, Sobolev spaces, Pure and Applied Mathematics, vol. 65, Academic Press, New York, 1975.

C.O. Alves and A.R. da Silva, Multiplicity and concentration of positive solutions for a class of quasilinear problems through Orlicz–Sobolev space, J. Math. Phys. 57 (2016), no. 11, 111502.

V. Ambrosio and T. Isernia, A multiplicity result for a (p, q)-Schrödinger–Kirchhoff type equation, Ann. Mat. Pur. Appl. 201 (2022), no. 2, 943–984.

V. Ambrosio and D. Repovš, Multiplicity and concentration results for a (p, q)-Laplacian problem in RN , Z. Angew. Math. Phys. 72 (2021), 1–33.

B. Avelin, T. Kuusi and G. Mingione, Nonlinear Caldern–Zygmund theory in the limiting case, Arch. Ration. Mech. Anal. 227 (2018), 663–714.

P. Baroni, M. Colombo and G. Mingione, Regularity for general functionals with double phase, Calc. Var. Partial Differential Equations 57 (2018), 62.

R. Bartolo, A.M. Candela and A. Salvatore, On a class of superlinear (p, q)-Laplacian type equations on RN , J. Math. Anal. Appl. 438 (2016), no. 1, 29–41.

L. Beck and G. Mingione, Lipschitz bounds and nonuniform ellipticity, Commun. Pure Appl. Math. 73 (2020), 944–1034.

H. Brezis and E.H. Lieb, A relation between pointwise convergence of functions and convergence of functionals, Proc. Amer. Math. Soc. 88 (1983), 486–490.

M.F. Chaves, G. Ercole and O.H. Miyagaki, Existence of a nontrivial solution for the (p, q)-Laplacian in RN without the Ambrosetti–Rabinowitz condition, Nonlinear Anal. 114 (2015), 133–141.

G.F. Che and T.F. Wu, Multiple positive solutions for a class of Kirchhoff type equations with indefinite nonlinearities, Adv. Nonlinear Anal. 11 (2022), no. 1, 598–619.

L. Cherfils and Y. Il’yasov, On the stationary solutions of generalized reaction diffusion equations with p&q-Laplacian, Commun. Pure Appl. Anal. 4 (2005), no. 1, 9–22.

M. Colombo and G. Mingione, Regularity for double phase variational problems, Arch. Ration. Mech. Anal. 215 (2015), 443–496.

C. De Filippis and G. Mingione, Lipschitz bounds and nonautonomous integrals, Arch. Ration. Mech. Anal. 242 (2021), 973–1057.

M. Del Pino, and P.L. Felmer, Local mountain passes for semilinear elliptic problems in unbounded domains, Calc. Var. Partial Differential Equations 4 (1996), 121–137.

I. Ekeland, On the variational principle, J. Math. Anal. Appl. 47 (1974), 324–353.

G.M. Figueiredo, Existence of positive solutions for a class of p&q elliptic problems with critical growth on RN , J. Math. Anal. Appl. 378 (2011), 507–518.

Y.X. Guo and J.J. Nie, Existence and multiplicity of nontrivial solutions for p-Laplacian Schrödinger–Kirchhoff-type equations, J. Math. Anal. Appl. 428 (2015), 1054–1069.

C. He and G. Li, The regularity of weak solutions to nonlinear scalar field elliptic equations containing p&q-Laplacians, Ann. Acad. Sci. Fenn. Math. 33 (2008), no. 1, 337–371.

C. He and G. Li, The existence of a nontrivial solution to the p&q-Laplacian problem with nonlinearity asymptotic to up−1 at infinity in RN , Nonlinear Anal. 68 (2008), no. 5, 1100–1119.

T. Isernia and D.D. Repovš, Nodal solutions for double phase Kirchhoff problems with vanishing potentials, Asymptot. Anal. 124 (2020), no. 3–4, 1–26.

H.F. Jia and G.B. Li, Multiplicity and concentration behaviour of positive solutions for Schrödinger–Kirchhoff type equations involving the p-Laplacian in RN , Acta. Math. Sci. Ser. B 38 (2018), no. 2, 391–418.

O.A. Ladyzhenskaya and N.N. Ural’tseva, Linear and Quasilinear Elliptic Equations, Academic Press, Cambridge, 1968.

P.L. Lions, The concentration-compactness principle in the calculus of variations. The locally compact case II, Ann. Inst. H. Poincaré Anal. Non Linéaire 1 (1984), no. 4, 223–283.

G. Mingione and V. Rădulescu, Recent developments in problems with nonstandard growth and nonuniform ellipticity, J. Math. Anal. Appl. 501 (2021), 125197.

D. Mugnai and N.S. Papageorgiou, Wang’s multiplicity result for superlinear (p, q)equations without the Ambrosetti–Rabinowitz condition, Trans. Amer. Math. Soc. 366 (2014), 4919–4937.

Y. Su and S. Liu, Nehari–Pohozaev-type ground state solutions of Kirchhoff-type equation with singular potential and critical exponent, Canad. Math. Bull. 65 (2022), 473–495.

J.T. Sun and T.F. Wu, Ground state solutions for an indefinite Kirchhoff type problem with steep potential well, J. Differential Equations 256 (2014), 1771–1792.

A. Szulkin and T. Weth, The method of Nehari manifold, Handbook of Nonconvex Analysis and Applications (D.Y. Gao and D. Motreanu, eds.), International Press, Boston, 2010, pp. 597–632.

N.S. Trudinger, On Harnack type inequalities and their application to quasilinear elliptic equations, Commun. Pure Appl. Math. 20 (1967), 721–747.

S. Wang and Y. Su, Existence of solution to critical Kirchhoff-type equation with dipoletype potential, Electron. J. Differential Equations 34 (2022), 1–18.

M. Williem, Minimax Theorems, Progress in Nonlinear Differential Equations and Their Applications, vol. 24, Birkhäuser, Boston, 1996.

W.H. Xie and H.B. Chen, Multiple positive solutions for the critical Kirchhoff type problems involving sign-changing weight functions, J. Math. Anal. Appl. 479 (2019), no. 1, 135–161.

J.J. Zhang, D.G. Costa and J.M. do Ó, Semiclassical states of p-Laplacian equations with a general nonlinearity in critical case, J. Math. Phys. 57 (2016), 071504.

Downloads

  • PREVIEW
  • FULL TEXT

Published

2024-03-03

How to Cite

1.
YANG, Jie, LIU, Lintao and MENG, Fengjuan. Multiplicity and concentration of positive solutions to the double phase Kirchhoff type problems with critical growth. Topological Methods in Nonlinear Analysis. Online. 3 March 2024. Vol. 63, no. 2, pp. 481 - 513. [Accessed 28 June 2025]. DOI 10.12775/TMNA.2023.026.
  • ISO 690
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

Vol 63, No 2 (June 2024)

Section

Articles

License

Copyright (c) 2024 Jie Yang, Lintao Liu, Fengjuan Meng

Creative Commons License

This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.

Stats

Number of views and downloads: 0
Number of citations: 0

Search

Search

Browse

  • Browse Author Index
  • Issue archive

User

User

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo

Newsletter

Subscribe Unsubscribe
Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop