Skip to main content Skip to main navigation menu Skip to site footer
  • Login
  • Language
    • English
    • Język Polski
  • Menu
  • Home
  • Current
  • Online First
  • Archives
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  • Login
  • Language:
  • English
  • Język Polski

Topological Methods in Nonlinear Analysis

A fixed point theorem for nonself nonlinear contractions in length spaces
  • Home
  • /
  • A fixed point theorem for nonself nonlinear contractions in length spaces
  1. Home /
  2. Archives /
  3. Vol 63, No 1 (March 2024) /
  4. Articles

A fixed point theorem for nonself nonlinear contractions in length spaces

Authors

  • Simeon Reich https://orcid.org/0000-0003-0780-1559
  • Alexander J. Zaslavski

DOI:

https://doi.org/10.12775/TMNA.2023.007

Keywords

Complete metric space, contractive mapping, fixed point, nonexpansive mapping

Abstract

In 1988 N.A. Assad showed that a nonself nonlinear contraction taking a closed subset of a complete metrically convex space into the space so that the boundary of this subset is mapped back into the subset itself has a unique fixed point. In the present paper we extend this result by replacing the complete metrically convex space with a complete metric space which is a length space.

References

N.A. Assad, On some nonself nonlinear contractions, Math. Japon. 33 (1988), 17–26.

N.A. Assad and W.A. Kirk, Fixed point theorems for set-valued mappings of contractive type, Pacific J. Math. 43 (1972), 553–562.

S. Banach, Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales, Fund. Math. 3 (1922), 133–181.

H.H. Bauschke and V.R. Koch, Projection methods: Swiss army knives for solving feasibility and best approximation problems with half-spaces, Contemp. Math. 636 (2015), 1–40.

A. Betiuk-Pilarska and T. Domı́nguez Benavides, Fixed points for nonexpansive mappings and generalized nonexpansive mappings on Banach lattices, Pure Appl. Func. Anal. 1 (2016), 343–359.

R.E. Bruck, Asympotic behavior of nonexpansive mappings, Contemp. Math. 18 (1983), 1–47.

D. Butnariu, R. Davidi, G.T. Herman and I.G. Kazantsev, Stable convergence behavior under summable perturbations of a class of projection methods for convex feasibility and optimization problems, IEEE Journal of Selected Topics in Signal Processing 1 (2007), 540–547.

Y. Censor, R. Davidi and G.T. Herman, Perturbation resilience and superiorization of iterative algorithms, Inverse Problems 26 (2010), 12 pp.

Y. Censor, R. Davidi, G.T. Herman, R.W. Schulte and L. Tetruashvili, Projected subgradient minimization versus superiorization, J. Optim. Theory Appl. 160 (2014), 730–747.

Y. Censor and M. Zaknoon, Algorithms and convergence results of projection methods for inconsistent feasibility problems: em a review, Pure Appl. Func. Anal. 3 (2018), 565–586.

Y. Censor and A.J. Zaslavski, Convergence and perturbation resilience of dynamic string-averaging projection methods, Comput. Optim. Applications 54 (2013), 65–76.

F.S. de Blasi, J. Myjak, S. Reich and A.J. Zaslavski, Generic existence and approximation of fixed points for nonexpansive set-valued maps, Set-Valued Var. Anal. 17 (2009), 97–112.

A. Gibali, A new split inverse problem and an application to least intensity feasible solutions, Pure Appl. Funct. Anal. 2 (2017), 243–258.

K. Goebel and W.A. Kirk, Topics in Metric Fixed Point Theory, Cambridge University Press, Cambridge, 1990.

K. Goebel and S. Reich, Uniform Convexity, Hyperbolic Geometry, and Nonexpansive Mappings, Marcel Dekker, New York and Basel, 1984.

J. Jachymski, Extensions of the Dugundji–Granas and Nadler’s theorems on the continuity of fixed points, Pure Appl. Funct. Anal. 2 (2017), 657–666.

R. Kubota, W. Takahashi and Y. Takeuchi, Extensions of Browder’s demiclosedness principle and Reich’s lemma and their applications, Pure Appl. Func. Anal. 1 (2016), 63–84.

S.B. Nadler Jr, Multi-valued contraction mappings, Pacific J. Math. 30 (1969), 475–488.

O.K. Oyewole, S. Reich and A.J. Zaslavski, A fixed point theorem in length spaces, Dyn. Systems Appl. 31 (2022), 173–180.

A. Petruşel, G. Petruşel and J.-C. Yao, Coupled fixed point theorems for symmetric contractions in b-metric spaces with applications to operator equation systems, Fixed Point Theory 17 (2016), 457–475.

S. Reich and A.J. Zaslavski, Generic Aspects of Metric Fixed Point Theory, Handbook of Metric Fixed Point Theory, Kluwer, Dordrecht, 2001, pp. 557–575.

S. Reich and A.J. Zaslavski, Genericity in Nonlinear Analysis, Developments in Mathematics, vol. 34, Springer, New York, 2014.

S. Reich and A.J. Zaslavski, Generic existence of fixed points for a class of nonexpansive mappings, J. Nonlinear Convex Anal. 23 (2022), 793–800.

S. Reich and A.J. Zaslavski, A porosity result regarding fixed points for a class of nonexpansive mappings, Appl. Set-Valued Anal. Optim. 4 (2022), 375–380.

Y. Su, A. Petruşel and J.-C. Yao, Multivariate fixed point theorems for contractions and nonexpansive mappings with applications, Fixed Point Theory Appl. (2016), 19 pp.

W. Takahashi, The split common fixed point problem and the shrinking projection method for new nonlinear mappings in two Banach spaces, Pure Appl. Funct. Anal. 2 (2017), 685–699.

W. Takahashi, A general iterative method for split common fixed point problems in Hilbert spaces and applications, Pure Appl. Funct. Anal. 3 (2018), 349–369.

A.J. Zaslavski, Approximate Solutions of CommonFfixed Point Problems, Springer Optimization and Its Applications, Springer, Cham, 2016.

Downloads

  • PREVIEW
  • FULL TEXT

Published

2024-03-03

How to Cite

1.
REICH, Simeon and ZASLAVSKI, Alexander J. A fixed point theorem for nonself nonlinear contractions in length spaces. Topological Methods in Nonlinear Analysis. Online. 3 March 2024. Vol. 63, no. 1, pp. 13 - 22. [Accessed 11 December 2025]. DOI 10.12775/TMNA.2023.007.
  • ISO 690
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

Vol 63, No 1 (March 2024)

Section

Articles

License

Copyright (c) 2024 Simeon Reich, Alexander J. Zaslavski

Creative Commons License

This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.

Stats

Number of views and downloads: 0
Number of citations: 0

Search

Search

Browse

  • Browse Author Index
  • Issue archive

User

User

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo

Newsletter

Subscribe Unsubscribe
Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop