Skip to main content Skip to main navigation menu Skip to site footer
  • Login
  • Language
    • English
    • Język Polski
  • Menu
  • Home
  • Current
  • Online First
  • Archives
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  • Login
  • Language:
  • English
  • Język Polski

Topological Methods in Nonlinear Analysis

Bi-spatial random attractor for stochastic FitzHugh-Nagumo systems on unbounded thin domain
  • Home
  • /
  • Bi-spatial random attractor for stochastic FitzHugh-Nagumo systems on unbounded thin domain
  1. Home /
  2. Archives /
  3. Vol 63, No 2 (June 2024) /
  4. Articles

Bi-spatial random attractor for stochastic FitzHugh-Nagumo systems on unbounded thin domain

Authors

  • Fuzhi Li
  • Dongmei Xu

DOI:

https://doi.org/10.12775/TMNA.2022.047

Keywords

Stochastic FitzHugh-Nagumo systems, unbounded thin domain, bi-spatial random attractor, upper semi-continuity

Abstract

A bi-spatial random attractor is obtained for the stochastic FitzHugh-Nagumo systems on unbounded thin domains when the initial space is $L^2\times L^2$ and the terminate space is $L^p\times L^2$. Furthermore, we establish the upper semi-continuity of attractors under the $p$-norm when a family of $(n+1)$-dimensional thin domains degenerates into a $n$-dimensional unbounded domain.

References

A. Adili and B. Wang, Random attractors for stochastic FitzHugh–Nagumo systems driven by deterministic non-autonomous forcing, Discrete Contin. Dyn. Syst. Ser. B 18 (2013), 643–666.

F. Antoci and M. Prizzi, Reaction-diffusion equations on unbounded thin domains, Topol. Methods Nonlinear Anal. 18 (2001), 283–302.

L. Arnold, Random Dynamical Systems, Springer–Verlag, Berlin, 1998.

T.Q. Bao, Regularity of pullback random attractors for stochastic FitzHugh–Nagumo system on unbounded domains, Discrete Contin. Dyn. Syst. 35 (2015), 441–466.

K. Christopher and R.T. Jones, Stability of the traveling wave solution of the FitzHugh–Nagumo system, Trans. Amer. Math. Soc. 286 (1984), 431–469.

I. Chueshov, Monotone Random Systems Theory and Applications, Springer Science and Business Media, 2002.

I. Chueshov and S. Kuksin, Random kick-forced 3D Navier–Stokes equations in a thin domain, Arch. Ration. Mech. Anal. 188 (2008), 117–153.

C.E. Elmer and E.S.V. Vleck, Spatially discrete FitzHugh–Nagumo equations, SIAM J. Appl. Math. 65 (2005), 1153–1174 .

A. Gu and Y. Li, Singleton sets random attractor for stochastic FitzHugh–Nagumo lattice equations driven by fractional brownian motions, Commun. Nonlinear Sci. Numer. Simul. 19 (2014), 3929–3937.

A. Gu, Y. Li and J. Li, Random attractor for stochastic lattice FitzHugh–Nagumo system driven by α-stable lévy noises, Int. J. Bifurcat. Chaos 24 (2014), 1450123.

J.K. Hale and G. Raugel, A damped hyperbolic equation on thin domains, Trans. Amer. Math. Soc. 329 (1992), 185–219.

J.K. Hale and G. Raugel, Reaction-diffusion equations on thin domains, J. Math. Pures Appl. 71 (1992), 33–95.

J.K. Hale and G. Raugel, A reaction-diffusion equation on a thin L-shaped domain, Proc. Roy. Soc. Edinburgh Sect. A 125 (1995), 283–327.

D. Li, B. Wang and X. Wang, Limiting behavior of non-autonomous stochastic reactiondiffusion equations on thin domains, J. Differential Equations 262 (2017), 1575–1602.

D. Li and X. Wang, Regular random attractors for non-autonomous stochastic reactiondiffusion equations on thin domains, Electron. Res. Arch. 29 (2021), 1969–1990.

F. Li, Dynamics for stochastic FitzHugh–Nagumo systems with general multiplicative noise on thin domains, Math. Meth. Appl. Sci. 44 (2021), 5050-5078.

F. Li and D. Xu, Regular dynamics for stochastic FitzHugh–Nagumo systems with additive noise on thin domains, Discrete Contin. Dyn. Syst. B 26 (2021), 3517–3542.

F. Li and D. Xu, Backward regularity of attractors for lattice FitzHugh–Nagumo system with double random coefficients, Appl. Math. Comput. 430 (2022), 127305.

F. Li, Y. Li and R. Wang, Strong convergence of bi-spatial random attractors for parabolic on thin domains with rough noise, Topol. Methods Nonlinear Anal. 53 (2019), 659–682.

Y. Li, H. Cui and J. Li, Upper semi-continuity and regularity of random attractors on p-times integrable spaces and applications, Nonlinear Anal. 109 (2014), 33–44.

Y. Li, A. Gu and J. Li, Existence and continuity of bi-spatial random attractors and application to stochastic semilinear Laplacian equations, J. Differential Equations 258 (2015), 504–534.

Y. Li and J. Yin, A modified proof of pullback attractors in a Sobolev space for stochastic FitzHugh–Nagumo equations, Discrete Contin. Dyn. Syst. B 21 (2016), 1203–1223.

Y. Morita, Stable solutions to the Ginzburg–Landau equation with magnetic effect in a thin domain, Japan J. Indust. Appl. Math. 21 (2004), 129–147.

M. Prizzi, A remark on reaction-diffusion equations in unbounded domains, Discrete Contin. Dyn. Syst. 9 (2002), 281–286.

G. Raugel and G.R. Sell, Navier–Stokes equations on thin 3D domains. I. Global attractors and global regularity of solutions, J. Amer. Math. Soc. 6 (1993), 503–568.

L. Shi, R. Wang, K. Lu and B. Wang, Asymptotic behavior of stochastic FitzHugh–Nagumo systems on unbounded thin domains, J. Differential Equations 267 (2019), 4373–4409.

L. Shi, D. Li, X. Li and X. Wang, Dynamics of stochastic FitzHugh–Nagumo systems with additive noise on unbounded thin domains, Stoch. Dyn. 20 (2020), 2050018.

B. Wang, Sufficient and necessary criteria for existence of pullback attractors for noncompact random dynamical systems, J. Differential Equations 253 (2012), 1544–1583.

B. Wang, Pullback attractors for the non-autonomous Fitzhugh–Nagumo system on unbounded domains, Nonlinear Anal. 71 (2009), 3799–3815.

R. Wang and B. Wang, Asymptotic behavior of non-autonomous fractional p-Laplacian equations driven by additive noise on unbounded domains, Bull. Math. Sci. 11 (2020), 2050020.

Z. Wang and S. Zhou, Random attractors for non-autonomous stochastic lattice FitzHugh–Nagumo systems with random coupled coeffcients, Taiwanese J. Math. 20 (2016), 589–616.

J. Yin, Y. Li and H. Zhao, Random attractors for stochastic semi-linear degenerate parabolic equations with additive noise in Lq , Appl. Math. Comput. 225 (2013) 526-540.

J. Yin, Y. Li and H. Cui, Box-counting dimensions and upper semicontinuities of bispatial attractors for stochastic degenerate parabolic equations on an unbounded domain, J. Math. Anal. Appl. 450 (2017), 1180–1207.

W. Zhao, Regularity of random attractors for a degenerate parabolic equations driven by additive noises, Appl. Math. Comput. 239 (2014), 358–374.

W. Zhao and Y. Li, (L2 , Lp )-random attractors for stochastic reaction-diffusion equation on unbounded domains, Nonlinear Anal. 75 (2012), 485–502.

S. Zhou and Z. Wang, Finite fractal dimensions of random attractors for stochastic Fitzhugh–Nagumo system with multiplicative white noise, J. Math. Anal. Appl. 441 (2016), 648–667.

Downloads

  • PREVIEW
  • FULL TEXT

Published

2024-03-03

How to Cite

1.
LI, Fuzhi and XU, Dongmei. Bi-spatial random attractor for stochastic FitzHugh-Nagumo systems on unbounded thin domain. Topological Methods in Nonlinear Analysis. Online. 3 March 2024. Vol. 63, no. 2, pp. 325 - 347. [Accessed 28 June 2025]. DOI 10.12775/TMNA.2022.047.
  • ISO 690
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

Vol 63, No 2 (June 2024)

Section

Articles

License

Copyright (c) 2024 Fuzhi Li, Dongmei Xu

Creative Commons License

This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.

Stats

Number of views and downloads: 0
Number of citations: 0

Search

Search

Browse

  • Browse Author Index
  • Issue archive

User

User

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo

Newsletter

Subscribe Unsubscribe
Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop