Bi-spatial random attractor for stochastic FitzHugh-Nagumo systems on unbounded thin domain
DOI:
https://doi.org/10.12775/TMNA.2022.047Keywords
Stochastic FitzHugh-Nagumo systems, unbounded thin domain, bi-spatial random attractor, upper semi-continuityAbstract
A bi-spatial random attractor is obtained for the stochastic FitzHugh-Nagumo systems on unbounded thin domains when the initial space is $L^2\times L^2$ and the terminate space is $L^p\times L^2$. Furthermore, we establish the upper semi-continuity of attractors under the $p$-norm when a family of $(n+1)$-dimensional thin domains degenerates into a $n$-dimensional unbounded domain.References
A. Adili and B. Wang, Random attractors for stochastic FitzHugh–Nagumo systems driven by deterministic non-autonomous forcing, Discrete Contin. Dyn. Syst. Ser. B 18 (2013), 643–666.
F. Antoci and M. Prizzi, Reaction-diffusion equations on unbounded thin domains, Topol. Methods Nonlinear Anal. 18 (2001), 283–302.
L. Arnold, Random Dynamical Systems, Springer–Verlag, Berlin, 1998.
T.Q. Bao, Regularity of pullback random attractors for stochastic FitzHugh–Nagumo system on unbounded domains, Discrete Contin. Dyn. Syst. 35 (2015), 441–466.
K. Christopher and R.T. Jones, Stability of the traveling wave solution of the FitzHugh–Nagumo system, Trans. Amer. Math. Soc. 286 (1984), 431–469.
I. Chueshov, Monotone Random Systems Theory and Applications, Springer Science and Business Media, 2002.
I. Chueshov and S. Kuksin, Random kick-forced 3D Navier–Stokes equations in a thin domain, Arch. Ration. Mech. Anal. 188 (2008), 117–153.
C.E. Elmer and E.S.V. Vleck, Spatially discrete FitzHugh–Nagumo equations, SIAM J. Appl. Math. 65 (2005), 1153–1174 .
A. Gu and Y. Li, Singleton sets random attractor for stochastic FitzHugh–Nagumo lattice equations driven by fractional brownian motions, Commun. Nonlinear Sci. Numer. Simul. 19 (2014), 3929–3937.
A. Gu, Y. Li and J. Li, Random attractor for stochastic lattice FitzHugh–Nagumo system driven by α-stable lévy noises, Int. J. Bifurcat. Chaos 24 (2014), 1450123.
J.K. Hale and G. Raugel, A damped hyperbolic equation on thin domains, Trans. Amer. Math. Soc. 329 (1992), 185–219.
J.K. Hale and G. Raugel, Reaction-diffusion equations on thin domains, J. Math. Pures Appl. 71 (1992), 33–95.
J.K. Hale and G. Raugel, A reaction-diffusion equation on a thin L-shaped domain, Proc. Roy. Soc. Edinburgh Sect. A 125 (1995), 283–327.
D. Li, B. Wang and X. Wang, Limiting behavior of non-autonomous stochastic reactiondiffusion equations on thin domains, J. Differential Equations 262 (2017), 1575–1602.
D. Li and X. Wang, Regular random attractors for non-autonomous stochastic reactiondiffusion equations on thin domains, Electron. Res. Arch. 29 (2021), 1969–1990.
F. Li, Dynamics for stochastic FitzHugh–Nagumo systems with general multiplicative noise on thin domains, Math. Meth. Appl. Sci. 44 (2021), 5050-5078.
F. Li and D. Xu, Regular dynamics for stochastic FitzHugh–Nagumo systems with additive noise on thin domains, Discrete Contin. Dyn. Syst. B 26 (2021), 3517–3542.
F. Li and D. Xu, Backward regularity of attractors for lattice FitzHugh–Nagumo system with double random coefficients, Appl. Math. Comput. 430 (2022), 127305.
F. Li, Y. Li and R. Wang, Strong convergence of bi-spatial random attractors for parabolic on thin domains with rough noise, Topol. Methods Nonlinear Anal. 53 (2019), 659–682.
Y. Li, H. Cui and J. Li, Upper semi-continuity and regularity of random attractors on p-times integrable spaces and applications, Nonlinear Anal. 109 (2014), 33–44.
Y. Li, A. Gu and J. Li, Existence and continuity of bi-spatial random attractors and application to stochastic semilinear Laplacian equations, J. Differential Equations 258 (2015), 504–534.
Y. Li and J. Yin, A modified proof of pullback attractors in a Sobolev space for stochastic FitzHugh–Nagumo equations, Discrete Contin. Dyn. Syst. B 21 (2016), 1203–1223.
Y. Morita, Stable solutions to the Ginzburg–Landau equation with magnetic effect in a thin domain, Japan J. Indust. Appl. Math. 21 (2004), 129–147.
M. Prizzi, A remark on reaction-diffusion equations in unbounded domains, Discrete Contin. Dyn. Syst. 9 (2002), 281–286.
G. Raugel and G.R. Sell, Navier–Stokes equations on thin 3D domains. I. Global attractors and global regularity of solutions, J. Amer. Math. Soc. 6 (1993), 503–568.
L. Shi, R. Wang, K. Lu and B. Wang, Asymptotic behavior of stochastic FitzHugh–Nagumo systems on unbounded thin domains, J. Differential Equations 267 (2019), 4373–4409.
L. Shi, D. Li, X. Li and X. Wang, Dynamics of stochastic FitzHugh–Nagumo systems with additive noise on unbounded thin domains, Stoch. Dyn. 20 (2020), 2050018.
B. Wang, Sufficient and necessary criteria for existence of pullback attractors for noncompact random dynamical systems, J. Differential Equations 253 (2012), 1544–1583.
B. Wang, Pullback attractors for the non-autonomous Fitzhugh–Nagumo system on unbounded domains, Nonlinear Anal. 71 (2009), 3799–3815.
R. Wang and B. Wang, Asymptotic behavior of non-autonomous fractional p-Laplacian equations driven by additive noise on unbounded domains, Bull. Math. Sci. 11 (2020), 2050020.
Z. Wang and S. Zhou, Random attractors for non-autonomous stochastic lattice FitzHugh–Nagumo systems with random coupled coeffcients, Taiwanese J. Math. 20 (2016), 589–616.
J. Yin, Y. Li and H. Zhao, Random attractors for stochastic semi-linear degenerate parabolic equations with additive noise in Lq , Appl. Math. Comput. 225 (2013) 526-540.
J. Yin, Y. Li and H. Cui, Box-counting dimensions and upper semicontinuities of bispatial attractors for stochastic degenerate parabolic equations on an unbounded domain, J. Math. Anal. Appl. 450 (2017), 1180–1207.
W. Zhao, Regularity of random attractors for a degenerate parabolic equations driven by additive noises, Appl. Math. Comput. 239 (2014), 358–374.
W. Zhao and Y. Li, (L2 , Lp )-random attractors for stochastic reaction-diffusion equation on unbounded domains, Nonlinear Anal. 75 (2012), 485–502.
S. Zhou and Z. Wang, Finite fractal dimensions of random attractors for stochastic Fitzhugh–Nagumo system with multiplicative white noise, J. Math. Anal. Appl. 441 (2016), 648–667.
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Fuzhi Li, Dongmei Xu
This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.
Stats
Number of views and downloads: 0
Number of citations: 0