Skip to main content Skip to main navigation menu Skip to site footer
  • Login
  • Language
    • English
    • Język Polski
  • Menu
  • Home
  • Current
  • Online First
  • Archives
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  • Login
  • Language:
  • English
  • Język Polski

Topological Methods in Nonlinear Analysis

Multiple mixed interior and boundary peaks synchronized solutions for linearly coupled Schrödinger systems
  • Home
  • /
  • Multiple mixed interior and boundary peaks synchronized solutions for linearly coupled Schrödinger systems
  1. Home /
  2. Archives /
  3. Vol 62, No 2 (December 2023) /
  4. Articles

Multiple mixed interior and boundary peaks synchronized solutions for linearly coupled Schrödinger systems

Authors

  • Ke Jin https://orcid.org/0000-0001-8882-0748

DOI:

https://doi.org/10.12775/TMNA.2023.020

Keywords

Schrödinger system, linearly coupled terms, mixed multiple spikes

Abstract

In the present paper we consider the problem: \begin{equation} \label{0}\tag{N$_\varepsilon$} \begin{cases} -\varepsilon^{2}\Delta u+u=u^{3}+\lambda v& \text{in } \Omega, \\ -\varepsilon^{2}\Delta v+v=v^{3}+\lambda u& \text{in } \Omega,\\ u> 0,\ v> 0& \text{in } \Omega,\\ \dfrac{\partial u}{\partial n}=\dfrac{\partial v}{\partial n}=0& \text{on } \partial\Omega, \end{cases} \end{equation} where $\varepsilon> 0$, $0< \lambda< 1$, $\Omega\subset\mathbb{R}^{3}$ is smooth and bounded, and $n$ denotes the outer normal vector defined on $\partial\Omega$, the boundary of $\Omega$. By the Lyapunov-Schmidt reduction method and the maximum principle of elliptic equations, we construct synchronized solutions of (\ref{0}) with mixed interior and boundary peaks for any $0< \varepsilon< \varepsilon_0$ and $\lambda\in(0,1)\backslash\{\lambda_0\}$, where $\lambda_0\in(0,1)$ is given and $\varepsilon_0> 0$ is sufficiently small. As $\varepsilon$ approaches $0$, the interior peaks concentrate at sphere packing points in $\Omega$ and the boundary peaks concentrate at the critical points of the mean curvature function of the boundary.

References

N. Akhmediev and A. Ankiewicz, Novel soliton states and bifurcation phenomena in nonlinear fiber couplers, Phys. Rev. Lett. 70 (1993), 2395–2398.

A. Ambrosetti, Remarks on some systems of nonlinear Schrödinger equations, J. Fixed Point Theory Appl. 4 (2008), 35–46.

A. Ambrosetti, G. Cerami and D. Ruiz, Solitons of linearly coupled systems of semilinear non-autonomous equations on Rn , J. Funct. Anal. 254 (2008), 2816–2845.

A. Ambrosetti and E. Colorado, Bound and ground states of coupled nonlinear Schrödinger equations, C.R. Acad. Sci. Paris Sér. I 342 (2006), 453–458.

A. Ambrosetti, E. Colorado and D. Ruiz, Multi-bump solitons to linearly coupled systems of nonlinear Schrödinger equations, Calc. Var. Partial Differential Equations 30 (2007), 85–112.

Y. Ao, J. Wang and W. Zou, On the existence and regularity of vector solutions for quasilinear systems with linear coupling, Science China Math. 62 (2019), 125–146.

W. Ao, J. Wei and J. Zeng, An optimal bound on the number of interior peak solutions for the Lin–Ni–Takagi problem, J. Funct. Anal. 265 (2013), 1324–1356.

A. Bahri and Y. Li, On a min-max procedure for the existence of a positive solution for certain scaler field equation in Rn , Rev. Mat. Iberoam. 6 (1990), 1–15.

P. Bates and G. Fusco, Equilibria with many nuclei for the Cahn–Hilliard equation, J. Differential Equations 160 (2000), 283–356.

P. Bates, E.N. Dancer and J. Shi, Multi-spike stationary solutions of the Cahn–Hilliard equation in higher-dimension and instability, Adv. Differential Equations 4 (1999), 1–69.

J. Byeon, Singularly perturbed nonlinear Neumann problems with a general nonlinearity, J. Differential Equations 244 (2008), 2473–2497.

S. Chen and X. Tang, Semiclassical solutions for linearly coupled Schrödinger equations, Electron. J. Differential Equations 2014 (2014), 1–11.

G. Cerami and J. Wei, Multiplicity of multiple interior spike solutions for some singularly perturbed Neumann problem, Internat. Math. Research Notices 12 (1998), 601–626.

Z. Chen and W. Zou, Standing waves for coupled nonlinear Schrödinger equations with decaying potentials, J. Math. Phys. 54 (2013), 111505.

Z. Chen and W. Zou, Standing waves for a coupled system of nonlinear Schrödinger equations, Ann. Mat. Pura Appl. 194 (2015), 183–220.

E.N. Dancer and S. Yan, Multipeak solutions for a singularly perturbed Neumann problem, Pacific J. Math. 189 (1999), 241–262.

E.N. Dancer and S. Yan, Interior and boundary peak solutions for a mixed boundary value problem, Indiana Univ. Math. J. 48 (1999), 1177–1212.

J.M. do Ó and J.C. de Albuquerque, Ground states for a linearly coupled system of Schrödinger equations on RN , Asymptot. Anal. 108 (2018), 221–241.

B. Gidas, W. Ni and L. Nirenberg, Symmetry of positive solutions of nonlinear elliptic equations in Rn , Mathematical Analysis and Applications, Part A, Adv. Math. Suppl. Stud., 7a, Academic Press, New York–London, 1981, pp. 369–402.

C. Gui, Multi-peak solutions for a semilinear Neumann problem, Duke Math. J. 84 (1996), 739–769.

C. Gui and J. Wei, Multiple interior peak solutions for some singularly perturbed Neumann problems, J. Differential Equations 158 (1999), 1–27.

C. Gui and J. Wei, On multiple mixed interior and boundary peak solutions for some singularly perturbed Neumann problems, Canad. J. Math. 52 (2000), 522–538.

C. Gui, J. Wei and M. Winter, Multiple boundary peak solutions for some singularly perturbed Neumann problems, Ann. Inst. H. Poincaré Anal. Nonlinéare 17 (2000), 47–82.

M.K. Kwong, Uniqueness of positive solutions of ∆u + u = up in Rn , Arch. Rational Mech. Anal. 105 (1989), 243–266.

C. Lin and S. Peng, Segregated vector solutions for linearly coupled nonlinear Schrödinger systems, Indiana Uni. Math. J. 64 (2014), 939–967.

F. Lin, W. Ni and J. Wei, On the number of interior peak solutions for singularly perturbered Neumann problem, Comm. Pure Appl. Math. 60 (2007), 252–281.

W. Long and Q. Wang, Segregated and synchronized vector solutions to linearly coupled systems of Schrödinger equations, J. Math. Phys. 56 (2015), 091507.

J. Peng, S. Chen and X. Tang, Semiclassical solutions for linearly coupled Schrödinger equations without compactness, Complex Var. Elliptic Equ. 64 (2019), 548–556.

C. Wang and J. Yang, Infinitely many solutions to a linearly coupled Schrödinger system with non-symmetric potentials, J. Math. Phys. 56 (2015), 051505.

Z. Wang, On the existence of multiple, single-peaked solutions for a semilinear Neumann problem, Arch. Rational Mech. Anal. 120 (1992), 375–399.

J. Wei and M. Winter, Multiple boundary spike solutions for a wide class of singular perturbation problems, J. London Math. Soc. 59 (1999), 585–606.

J. Wei and M. Winter, Higher-order energy expansions and spike locations, Calc. Var. Partial Differential Equations 20 (2004), 403–430.

J. Wei and M. Winter, Mathematical Aspects of Pattern Formation in Biological Systems, Applied Mathematical Sciences, 189, Springer, London, 2014.

H. Wu, Multiple solutions to a linearly coupled elliptic system with critical exponents, J. Math. Anal. Appl. 480 (2019), 123380.

Downloads

  • PREVIEW
  • FULL TEXT

Published

2023-12-31

How to Cite

1.
JIN, Ke. Multiple mixed interior and boundary peaks synchronized solutions for linearly coupled Schrödinger systems. Topological Methods in Nonlinear Analysis. Online. 31 December 2023. Vol. 62, no. 2, pp. 693 - 726. [Accessed 28 June 2025]. DOI 10.12775/TMNA.2023.020.
  • ISO 690
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

Vol 62, No 2 (December 2023)

Section

Articles

License

Copyright (c) 2023 Ke Jin

Creative Commons License

This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.

Stats

Number of views and downloads: 0
Number of citations: 0

Search

Search

Browse

  • Browse Author Index
  • Issue archive

User

User

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo

Newsletter

Subscribe Unsubscribe
Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop