A direct proof of existence of weak solutions to elliptic problems
DOI:
https://doi.org/10.12775/TMNA.2023.019Keywords
xistence, elliptic boundary value problems, second order partial differential equations, Musielak-Orlicz spacesAbstract
We provide a direct proof of existence and uniqueness of weak solutions to a broad family of strongly nonlinear elliptic equations with lower-order terms. The leading part of the operator satisfies general growth conditions settling the problem in the framework of fully anisotropic and inhomogeneous Musielak-Orlicz spaces generated by an $N$-function \linebreak $M\colon \Omega\times\mathbb R^d\to [0,\infty)$. Neither $\nabla_2$ nor $\Delta_2$ conditions are imposed on $M$. Our results cover among others problems with anisotropic polynomial, Orlicz, variable exponent, and double phase growth.References
Y. Ahmida, I. Chlebicka, P. Gwiazda and A. Youssfi, Gossez’s approximation theorems in Musielak–Orlicz–Sobolev spaces, J. Funct. Anal. 275 (2018), 2538–2571.
A. Alberico, I. Chlebicka, A. Cianchi and A. Zatorska-Goldstein, Fully anisotropic elliptic problems with minimally integrable data, Calc. Var. Partial Differential Equations 58 (2019), paper no. 186.
G. Barletta and A. Cianchi, Dirichlet problems for fully anisotropic elliptic equations, Proc. Roy. Soc. Edinburgh Sect. A 147 (2017), 25–60.
M. Borowski and I. Chlebicka, Modular density of smooth functions in inhomogeneous and fully anisotropic Musielak–Orlicz–Sobolev spaces, J. Funct. Anal. 283 (2022), paper no. 109716.
M. Borowski, I. Chlebicka, F. De Filippis and B. Miasojedow, Absence and presence of Lavrentiev’s phenomenon in double phase functionals for every choice of exponents, Calc. Var. Partial Differential Equations (2023) (to appear).
M. Borowski, I. Chlebicka and B. Miasojedow, Absence of Lavrentiev’s gap for anisotropic functionals, (2023), arXiv: 2210.15217.
H. Brézis, Functional Analysis, Sobolev Spaces and Partial Differential Equations, Universitext, Springer, New York, 2011.
F.E. Browder, Nonlinear elliptic boundary value problems. Bull. Amer. Math. Soc. 69 (1963), 862–874.
I. Chlebicka, A pocket guide to nonlinear differential equations in Musielak–Orlicz spaces, Nonlinear Anal. 175 (2018), 1–27.
I. Chlebicka, F. Giannetti and A. Zatorska-Goldstein, A note on uniqueness for L1 -data elliptic problems with Orlicz growth, Colloq. Math. 168 (2022), 199–209.
I. Chlebicka, P. Gwiazda, A. Świerczewska-Gwiazda and A. Wróblewska-Kamińska, Partial Differential Equations in Anisotropic Musielak–Orlicz Spaces, Springer Monogr. Math. Springer, Cham, 2021.
I. Chlebicka, P. Gwiazda and A. Zatorska-Goldstein, Parabolic equation in time and space dependent anisotropic Musielak–Orlicz spaces in absence of Lavrentiev’s phenomenon, Ann. Inst. H. Poincaré C Anal. Non Linéaire 36 (2019), 1431–1465.
I. Chlebicka and P. Nayar, Essentially fully anisotropic Orlicz functions and uniqueness to measure data problem, Math. Methods Appl. Sci. 45 (2022), 8503–8527.
A. Denkowska, P. Gwiazda and P. Kalita, On renormalized solutions to elliptic inclusions with nonstandard growth, Calc. Var. Partial Differential Equations 60 (2021), paper no. 21.
A. Di Castro, Anisotropic elliptic problems with natural growth terms, Manuscripta Math. 135 (2011), 521–543.
T. Donaldson, Nonlinear elliptic boundary value problems in Orlicz–Sobolev spaces, J. Differential Equations 10 (1971), 507–528.
G. Dong and X. Fang, Differential equations of divergence form in separable Musielak–Orlicz–Sobolev spaces, Bound. Value Probl. (2016), paper no. 106.
J. Elstrodt, Maß-und Integrationstheorie, Springer–Lehrbuch [Springer Textbook], Springer–Verlag, Berlin, fourth edition, 2005.
L.C. Evans, Partial Differential Equations, Grad. Stud. Math., Providence, RI, 1998.
X. Fan, Differential equations of divergence form in Musielak–Sobolev spaces and a subsupersolution method, J. Math. Anal. Appl. 386 (2012), 593–604.
J.-P. Gossez, Nonlinear elliptic boundary value problems for equations with rapidly (or slowly) increasing coefficients, Trans. Amer. Math. Soc. 190 (1974), 163–205.
J.-P. Gossez, Orlicz–Sobolev spaces and nonlinear elliptic boundary value problems, Nonlinear analysis, function spaces and applications (1979), 59–94.
J.-P. Gossez, Some approximation properties in Orlicz–Sobolev spaces, Studia Math. 74 (1982), 17–24.
J.-P. Gossez and V. Mustonen, Variational inequalities in Orlicz–Sobolev spaces, Nonlinear Anal. 11 (1987), 379–392.
P. Gwiazda, P. Minakowski and A. Wróblewska-Kamińska, Elliptic problems in generalized Orlicz–Musielak spaces, Cent. Eur. J. Math. 10 (2012), 2019–2032.
P. Gwiazda, I. Skrzypczak and A. Zatorska-Goldstein, Existence of renormalized solutions to elliptic equation in Musielak–Orlicz space, J. Differential Equations 264 (2018), 341–377.
P. Gwiazda and A. Świerczewska-Gwiazda, On non-Newtonian fluids with a property of rapid thickening under different stimulus, Math. Models Methods Appl. Sci. 18 (2008), 1073–1092.
P. Gwiazda and A. Ś wierczewska-Gwiazda, Parabolic equations in anisotropic Orlicz spaces with general N-functions, Progr. Nonlinear Differential Equations Appl., Springer, 2011, pp. 301–311.
P. Gwiazda, P. Wittbold, A. Wróblewska and A. Zimmermann, Renormalized solutions of nonlinear elliptic problems in generalized Orlicz spaces, J. Differential Equations 253 (2012), 635–666.
P. Harjulehto and P. Hästö, Generalized Orlicz Spaces, Lecture Notes in Mathematics, vol. 2236, Springer, Cham, 2019.
P. Harjulehto, P. Hästö and R. Klén, Generalized orlicz spaces and related PDE, Nonlinear Anal. 143 (2016), 155–173.
P. Harjulehto, P. Hästö, U. V. Lê and M. Nuortio, Overview of differential equations with non-standard growth, Nonlinear Anal. 72 (2010), 4551–4574.
P. Hästö, A fundamental condition for harmonic analysis in anisotropic generalized Orlicz spaces, J. Geom. Anal. 33 (2023), paper no. 7.
P. Hess, On nonlinear mappings of monotone type with respect to two Banach spaces, J. Math. Pures Appl. (9) 52 (1973), 13–26.
D. Kinderlehrer and G. Stampacchia, An introduction to variational inequalities and their applications, Pure and Applied Mathematics, vol. 88, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York, London, 1980.
J. Leray and J.-L. Lions, Quelques résulatats de Višik sur les problèmes elliptiques nonlinéaires par les méthodes de Minty–Browder, Bull. Soc. Math. France 93 (1965), 97–107.
Y. Li, F. Yao and S. Zhou, Entropy and renormalized solutions to the general nonlinear elliptic equations in Musielak–Orlicz spaces, Nonlinear Anal. 61 (2021), paper no. 103330.
D. Liu and P. Zhao, Solutions for a quasilinear elliptic equation in Musielak–Sobolev spaces, Nonlinear Anal. 26 (2015), 315–329.
G. Mingione and V.D. Radulescu, Recent developments in problems with nonstandard growth and nonuniform ellipticity, J. Math. Anal. Appl. 501 (2021), paper no. 125197.
V. Mustonen and M. Tienari, On monotone-like mappings in Orlicz–Sobolev spaces, Math. Bohem. 124 (1999), 255–271.
R. Schumann, The Galerkin approximation for quasilinear elliptic equations with rapidly (or slowly) increasing coefficients, Z. Anal. Anwendungen 1 (1982), 73–85.
H. Sohr, The Navier–Stokes Equations: An Elementary Functional Analytic Approach, Springer Science and Business Media, 2012.
P. Wittbold and A. Zimmermann, Existence and uniqueness of renormalized solutions to nonlinear elliptic equations with variable exponents and L1 -data, Nonlinear Anal. 72 (2010), 2990–3008.
A. Wróblewska, Steady flow of non-Newtonian fluids monotonicity methods in generalized Orlicz spaces, Nonlinear Anal. 72 (2010), 4136–4147.
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Iwona Chlebicka, Arttu Karppinen, Ying Li
This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.
Stats
Number of views and downloads: 0
Number of citations: 0