Skip to main content Skip to main navigation menu Skip to site footer
  • Login
  • Language
    • English
    • Język Polski
  • Menu
  • Home
  • Current
  • Online First
  • Archives
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  • Login
  • Language:
  • English
  • Język Polski

Topological Methods in Nonlinear Analysis

Periodic solutions with irrational frequency for a class of semilinear wave equations with variable coefficients
  • Home
  • /
  • Periodic solutions with irrational frequency for a class of semilinear wave equations with variable coefficients
  1. Home /
  2. Archives /
  3. Vol 62, No 2 (December 2023) /
  4. Articles

Periodic solutions with irrational frequency for a class of semilinear wave equations with variable coefficients

Authors

  • Hui Wei https://orcid.org/0000-0003-0447-9314

DOI:

https://doi.org/10.12775/TMNA.2023.017

Keywords

Existence, periodic solutions, wave equation

Abstract

This paper is devoted to the study of the existence of periodic solutions for a class of semilinear wave equations with variable coefficients. The forced vibrations of a nonhomogeneous string and propagation of seismic waves in nonisotropic media is governed by this mathematical model. When the frequency is a sufficiently large irrational number with bounded partial quotients, the existence of weak solutions is established. Then, under some suitable conditions, we improve the regularity of weak solutions. Our results can also be applied to the corresponding constant coefficients wave equation.

References

P. Baldi and M. Berti, Forced vibrations of a nonhomogeneous string, SIAM J. Math. Anal. 40 (2008), 382–412.

V. Barbu and N.H. Pavel, Periodic solutions to nonlinear one dimensional wave equation with x-dependent coefficients, Trans. Amer. Math. Soc. 349 (1997), 2035–2048.

A.K. Ben-Naoum and J. Mawhin, Periodic solutions of some semilinear wave equation on balls and on spheres, Topol. Methods Nonlinear Anal. 1 (1993), 113–137.

J. Berkovits and J. Mawhin, Diophantine approximation, Bessel functions and radially symmetric periodic solutions of semilinear wave equations in a ball, Trans. Amer. Math. Soc. 353 (2001), 5041–5055.

M. Berti and P. Bolle, Periodic solutions of nonlinear wave equations with general nonlinearities, Comm. Math. Phys. 243 (2003), 315–328.

M. Berti and P. Bolle, Cantor families of periodic solutions for completely resonant nonlinear wave equations, Duke Math. J. 134 (2006), 359–419.

M. Berti and P. Bolle, Cantor families of periodic solutions for wave equations via a variational principle, Adv. Math. 217 (2008), 1671–1727.

M. Berti and P. Bolle, Cantor families of periodic solutions of wave equations with C k nonlinearities, NoDEA Nonlinear Differential Equations Appl. 15 (2008), 247–276.

M. Berti and P. Bolle, Sobolev periodic solutions of nonlinear wave equations in higher spatial dimensions, Arch. Ration. Mech. Anal. 195 (2010), 609–642.

M. Berti and P. Bolle, Sobolev quasi-periodic solutions of multidimensional wave equations with a multiplicative potential, Nonlinearity 25 (2012), 2579–2613.

E. Borel, Sur les équations aux dérivées partielles à coefficients constants et les fonctions non analytiques, C.R. Acad. Sci. Paris 121 (1895), 933–935.

J. Bourgain, Construction of periodic solutions of nonlinear wave equations in higher dimension, Geom. Funct. Anal. 5 (1995), 629–639.

H. Brézis, Periodic solutions of nonlinear vibrating strings and duality principles, Bull. Amer. Math. Soc. (N.S.) 8 (1983), 409–426.

H. Brézis and L. Nirenberg, Forced vibrations for a nonlinear wave equation, Comm. Pure Appl. Math. 31 (1978), 1–30.

K. Chang and L. Sanchez, Nontrivial periodic solutions of a nonlinear beam equation, Math. Methods Appl. Sci. 4 (1982), 194–205.

K. Chang, S. Wu and S. Li, Multiple periodic solutions for an asymptotically linear wave equation, Indiana Univ. Math. J. 31 (1982), 721–731.

B. Chen, Y. Gao and Y. Li, Periodic solutions to nonlinear Euler–Bernoulli beam equations, Commun. Math. Sci. 17 (2019), 2005–2034.

B. Chen, Y. Li and Y. Gao, The existence of periodic solutions for nonlinear beam equations on Td by a para-differential method, Math. Methods Appl. Sci. 41 (2018), 2546–2574.

J. Chen, Periodic solutions to nonlinear wave equation with spatially dependent coefficients, Z. Angew. Math. Phys. 66 (2015), 2095–2107.

J. Chen and Z. Zhang, Existence of infinitely many periodic solutions for the radially symmetric wave equation with resonance, J. Differential Equation 260 (2016), 6017–6037.

J. Chen and Z. Zhang, Existence of multiple periodic solutions to asymptotically linear wave equations in a ball, Calc. Var. Partial Differential Equations 56 (2017), 58.

J.M. Coron, Periodic solutions of a nonlinear wave equation without assumption of monotonicity, Math. Ann. 262 (1983), 273–285.

L. Corsi and R. Montalto, Quasi-periodic solutions for the forced Kirchhoff equation on Td , Nonlinearity 31 (2018), 5075–5109.

W. Craig and C.E. Wayne, Newton’s method and periodic solutions of nonlinear wave equations, Comm. Pure Appl. Math. 46 (1993), 1409–1498.

L.H. Eliasson, B. Grébert and S.B. Kuksin, KAM for the nonlinear beam equation, Geom. Funct. Anal. 26 (2016), 1588–1715.

J. Fokam, Multiplicity and regularity of large periodic solutions with rational frequency for a class of semilinear monotone wave equations, Proc. Amer. Math. Soc. 145 (2017), 4283–4297.

S. Ji, Time periodic solutions to a nonlinear wave equation with x-dependent coefficients, Calc. Var. Partial Differential Equations 32 (2008), 137–153.

S. Ji, Periodic solutions for one dimensional wave equation with bounded nonlinearity, J. Differential Equations 264 (2018), 5527–5540.

S. Ji and Y. Li, Periodic solutions to one-dimensional wave equation with x-dependent coefficients, J. Differential Equations 229 (2006), 466–493.

S.B. Kuksin, Hamiltonian perturbations of infinite-dimensional linear with imaginary spectrum, Funct. Anal. Appl. 21 (1987), 192–205.

M. Ma and S. Ji, Time periodic solutions of one-dimensional forced Kirchhoff equations with x-dependent coefficients, Proc. A. 474 (2018), 17 pp.

J. Mawhin, Topological degree methods in nonlinear boundary value problems, CBMS Regional Conference Series in Mathematics, vol. 40, American Mathematical Society, Providence, R.I., 1979.

P.J. Mckenna, On solutions of a nonlinear wave question when the ratio of the period to the length of the intervals is irrational, Proc. Amer. Math. Soc. 93 (1985), 59–64.

R. Montalto, Quasi-periodic solutions of forced Kirchhoff equation, NoDEA Nonlinear Differential Equations Appl. 24 (2017), 71 pp.

R. Montalto, A reducibility result for a class of linear wave equations on Td , Int. Math. Res. Not. IMRN (2019), 1788–862.

P. Rabinowitz, Periodic solutions of nonlinear hyperbolic partial differential equations, Comm. Pure Appl. Math. 20 (1967), 145–205.

P. Rabinowitz, Free vibrations for a semilinear wave equation, Comm. Pure Appl. Math. 31 (1978), 31–36.

I.A. Rudakov, Periodic solutions of the quasilinear equation of forced vibrations of an inhomogeneous string, Math. Notes 101 (2017), 137–148.

W.M. Schmidt, Diophantine Approximation, Lecture Notes in Math., vol. 785, Springer–Verlag, Berlin, 1980.

C. Tong and J. Zheng, The periodic solutions of a nonhomogeneous string with Dirichlet–Neumann condition, Chin. Ann. Math. Ser. B 35 (2014), 619–632.

C.E. Wayne, Periodic and quasi-periodic solutions of nonlinear wave equations via KAM theory, Commun. Math. Phys. 127 (1990), 479–528.

H. Wei and S. Ji, Infinitely many periodic solutions for a semilinear wave equation with x-dependent coefficients, ESAIM Control Optim. Calc. Var. 26 (2020), 20.

H. Wei and S. Ji, Existence of multiple periodic solutions to a semilinear wave equation with x-dependent coefficients, Proc. Roy. Soc. Edinburgh Sect. A 150 (2020), 2586–2606.

H. Wei, M. Ma and S. Ji, Multiple periodic solutions for an asymptotically linear wave equation with x-dependent coefficients, J. Math. Phys. 62 (2021), 20 pp.

Downloads

  • PREVIEW
  • FULL TEXT

Published

2023-12-31

How to Cite

1.
WEI, Hui. Periodic solutions with irrational frequency for a class of semilinear wave equations with variable coefficients. Topological Methods in Nonlinear Analysis. Online. 31 December 2023. Vol. 62, no. 2, pp. 625 - 641. [Accessed 29 June 2025]. DOI 10.12775/TMNA.2023.017.
  • ISO 690
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

Vol 62, No 2 (December 2023)

Section

Articles

License

Copyright (c) 2023 Hui Wei

Creative Commons License

This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.

Stats

Number of views and downloads: 0
Number of citations: 0

Search

Search

Browse

  • Browse Author Index
  • Issue archive

User

User

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo

Newsletter

Subscribe Unsubscribe
Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop