Przejdź do sekcji głównej Przejdź do głównego menu Przejdź do stopki
  • Zaloguj
  • Język
    • English
    • Język Polski
  • Menu
  • Strona domowa
  • Aktualny numer
  • Online First
  • Archiwum
  • O czasopiśmie
    • O czasopiśmie
    • Przesyłanie tekstów
    • Zespół redakcyjny
    • Polityka prywatności
    • Kontakt
  • Zaloguj
  • Język:
  • English
  • Język Polski

Topological Methods in Nonlinear Analysis

Normalized solutions for the Schrödinger-Poisson system with doubly critical growth
  • Strona domowa
  • /
  • Normalized solutions for the Schrödinger-Poisson system with doubly critical growth
  1. Strona domowa /
  2. Archiwum /
  3. Vol 62, No 2 (December 2023) /
  4. Articles

Normalized solutions for the Schrödinger-Poisson system with doubly critical growth

Autor

  • Yuxi Meng
  • Xiaoming He

DOI:

https://doi.org/10.12775/TMNA.2022.075

Słowa kluczowe

Schrödinger-Poisson system, normalized solutions, variational methods, L^2-subcritical, L^2-supercritical

Abstrakt

In this paper we are concerned with normalized solutions to the Schrödinger-Poisson system with doubly critical growth \[ \begin{cases} -\Delta u-\phi |u|^3u=\lambda u+\mu|u|^{q-2}u+|u|^4u, &x \in \R^{3},\\ -\Delta \phi=|u|^5, &x \in \R^{3}, \end{cases} \] and prescribed mass \[ \int_{\R^3}|u|^2dx=a^2,\] where $a> 0$ is a constant, $\mu> 0$ is a parameter and $2< q< 6$. In the $L^2$-subcritical case, we study the multiplicity of normalized solutions by applying the truncation technique, and the genus theory; and in the $L^2$-supercritical case, we obtain a couple of normalized solutions by developing a fiber map. Under both cases, to recover the loss of compactness of the energy functional caused by the critical growth, we need to adopt the concentration-compactness principle. Our results complement and improve some related studies for the Schrödinger-Poisson system with nonlocal critical term in the literature.

Bibliografia

C.O. Alves, C. Ji and O.H. Miyagaki, Multiplicity of normalized solutions for a Schrödinger equation with critical in RN , arXiv: 2103.07940.

C. Argaez and M. Melgaard, Solutions to quasi-relativistic multi-configurative Hartree–Fock equations in quantum chemistry, Nonlinear Anal. 75 (2012), 384–404.

A. Azzollini, P. d’Avenia and G. Vaira, Generalized Schrödinger–Newton system in dimension N ≥ 3: critical case, J. Math. Anal. Appl. 449 (2017), 531–552.

A. Azzollini, A. Pomponio and P. d’Avenia, On the Schrödinger–Maxwell equations under the effect of a general nonlinear term, Ann. Inst. Henri Poincaré Anal. Non Linéaire 27 (2010), no. 2, 779–791.

T. Bartsch, X. Zhong and W. Zou, Normalized solutions for a coupled Schrödinger system, Math. Ann. 380 (2021), 1713–1740.

J. Bellazzini, L. Jeanjean and T. Luo, Existence and instability of standing waves with prescribed norm for a class of Schrödinger–Poisson equations, Proc. Lond. Math. Soc. (3) 107 (2013), 303–339.

V. Benci and D. Fortunato, An eigenvalue problem for the Schrödinger–Maxwell equations, Topol. Methods Nonl. Anal. 11 (1998), 283–293.

O. Bokanowski, J.L. López and J. Soler, On an exchange interaction model for quantum transport: The Schrödinger–Poisson–Slater sytem, Math. Models Methods Appl. Sci. 13 (2003), 1397–1412.

J. Chabrowski, Concentration-compactness principle at infinity and semilinear elliptic equations involving critical and subcritical Sobolev exponents, Calc. Var. Partial Differential Equations 3 (1995), 493–512.

X. Feng, Ground state solutions for a class of Schrödinger–Poisson systems with partial potential, Z. Angew. Math. Phys. 71 (2020), no. 1, paper no. 37, 16 pp.

X. Feng, Existence and concentration of ground state solutions for doubly critical Schrödinger–Poisson-type systems, Z. Angew. Math. Phys. 71 (2020), no. 5, paper no. 154, 25 pp.

F. Gao, E.D. da Silva, M. Yang and J. Zhou, Existence of solutions for critical Choquard equations via the concentration compactness method, Proc. Roy. Soc. Edinburgh Sect. A 150 (2020), no. 2, 921–954.

F. Gao and M. Yang, Brezis–Nirenberg type critical problem for nonlinear Choquard equation, Sci. China Math. 61 (2018), 1219–1242.

J. Hirata and K. Tanaka, Nonlinear scalar field equations with L2 constraint: mountain pass and symmetric mountain pass approaches, Adv. Nonlinear Stud. 19 (2019), no. 2, 263–290.

L. Jeanjean, Existence of solutions with prescribed norm for semilinear elliptic equation, Nonlinear Anal. 28 (1997), 1633–1659.

L. Jeanjean and T.T. Le, Multiple normalized solutions for a Sobolev critical Schrödinger–Poisson–Slater equation, J. Differential Equations 303 (2021), 277–325.

L. Jeanjean and S. Lu, Nonradial normalized solutions for nonlinear scalar field equations, Nonlinearity 32 (2019), no. 12, 4942–4966.

F. Li, Y. Li and J. Shi, Existence and multiplicity of positive solutions to Schrödinger–Poisson type systems with critical nonlocal term, Calc. Var. Partial Differential Equations 56 (2017), no. 5, paper no. 134, 17 pp.

F. Li, Y. Li and J. Shi, Existence of positive solutions to Schrödinger–Poisson type systems with critical exponent, Commun. Contemp. Math. 16 (2014), 1450036.

N. Li and X. He, Existence and multiplicity results for some Schrödinger–Poisson system with critical growth, J. Math. Anal. Appl. 488 (2020), no. 2, 124071, 35 pp.

X. Li and S. Ma, Choquard equations with critical nonlinearities, Commun. Contemp. Math. 22(2020), no. 4, 1950023.

E. Lieb and M. Loss, Analysis, Graduate Studies in Mathematics, vol. 14, American Mathematical Society, Providence, 2001.

P.L. Lions, The concentration-compactness principle in the calculus of variations. The locally compact case, Part 2, Ann. Inst. Henri Poincaré Anal. Non Linéaire 1 (1984), 223–283.

H. Liu, Positive solutions of an asymptotically periodic Schrödinger–Poisson system with critical exponent, Nonlinear Anal. 32 (2016), 198–212.

L. Nirenberg, On elliptic partial differential equations, Ann. Scuola Norm. Sup. Pisa Cl. Sci. 13 (1959), 115–162.

P.H. Rabinowitz, On a class of nonlinear Schrödinger equations, Z. Angew. Math. Phys. 43 (1992), 270–291.

D. Ruiz, The Schrödinger–Poisson equation under the effect of a nonlinear local term, J. Funct. Anal. 237 (2006) , no. 2, 655–674.

D. Ruiz, On the Schrödinger–Poisson–Slater system: behavior of minimizers, radial and nonradial cases, Arch. Ration. Mech. Anal. 198 (2010), no. 1, 349–368.

M. Shibata, Stable standing waves of nonlinear Schrödinger equations with a general nonlinear term, Manuscripta Math. 143 (2014), 221–237.

N. Soave, Normalized ground states for the NLS equation with combined nonlinearities, J. Differential Equations 269 (2020), 6941–6987.

N. Soave, Normalized ground states for the NLS equation with combined nonlinearities: the Sobolev critical case, J. Funct. Anal. 279 (2020), 108610, 43 pp.

W.A. Strauss, Existence of solitary waves in higher dimensions, Comm. Math. Phys. 55 (1977), no. 2, 149–162.

M. Willem, Minimax Theorems, Birkhäuser, Boston, 1996.

Z. Yang, S. Qi and W. Zou, Normalized solutions of nonlinear Schrödinger equations with potentials and non-autonomous nonlinearities, J. Geom. Anal. 32 (2022), no. 5, paper no. 159, 27 pp.

Pobrania

  • PREVIEW (English)
  • FULL TEXT (English)

Opublikowane

2023-12-31

Jak cytować

1.
MENG, Yuxi & HE, Xiaoming. Normalized solutions for the Schrödinger-Poisson system with doubly critical growth. Topological Methods in Nonlinear Analysis [online]. 31 grudzień 2023, T. 62, nr 2, s. 509–534. [udostępniono 29.6.2025]. DOI 10.12775/TMNA.2022.075.
  • PN-ISO 690 (Polski)
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Pobierz cytowania
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Numer

Vol 62, No 2 (December 2023)

Dział

Articles

Licencja

Prawa autorskie (c) 2023 Yuxi Meng, Xiaoming He

Creative Commons License

Utwór dostępny jest na licencji Creative Commons Uznanie autorstwa – Bez utworów zależnych 4.0 Międzynarodowe.

Statystyki

Liczba wyświetleń i pobrań: 0
Liczba cytowań: 0

Wyszukiwanie

Wyszukiwanie

Przeglądaj

  • Indeks autorów
  • Lista archiwalnych numerów

Użytkownik

Użytkownik

Aktualny numer

  • Logo Atom
  • Logo RSS2
  • Logo RSS1

Newsletter

Zapisz się Wypisz się
W górę

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partnerzy platformy czasopism

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Uniwersytet Mikołaja Kopernika w Toruniu Deklaracja dostępności Sklep wydawnictwa