Injectivity of non-singular planar maps with disconnecting curves in the eigenvalues space
DOI:
https://doi.org/10.12775/TMNA.2022.073Keywords
Jacobian conjecture, global injectivity, eigenvalue continuityAbstract
Fessler and Gutierrez \cite{Fe}, \cite{Gu} proved that if a non-singular planar map has Jacobian matrix without eigenvalues in $(0,+\infty)$, then it is injective. We prove that the same holds replacing $(0,+\infty)$ with any unbounded curve disconnecting the upper (lower) complex half-plane. Additionally we prove that a Jacobian map $(P,Q)$ is injective if $\partial P/\partial x + \partial Q/\partial y$ is not a surjective function.References
V.I. Arnold, Mathematical Methods of Classical Mechanics, English transl.: from the Russian by K. Vogtmann and A. Weinstein, second edition, Graduate Texts in Mathematics, vol. 60, Springer–Verlag, Berlin and New York, 1989.
H. Bass, E.H. Connell and D. Wright, The Jacobian conjecture, Bull. Amer. Math. Soc. 7 (1982), 287–330.
F. Braun and J.R. dos Santos Filho, The real Jacobian conjecture on R2 is true when one of the components has degree 3, Discrete Contin. Dyn. Syst. 26 (2010), 75–87.
F. Braun, J. Giné and J. Llibre, A sufficient condition in order that the real Jacobian conjecture in R2 holds, J. Differential Equations 260 (2016), 5250–5258.
F. Braun, B. Orefice-Okamoto, On polynomial submersions of degree 4 and the real Jacobian conjecture in R2 , J. Math. Anal. Appl. 443 (2016), 688–706.
M. Chamberland, A Diffeomorphic real-analytic maps and the Jacobian conjecture, Math. Comput. Model 32 (2000), 727–732.
A. Cima, A. van den Essen, A. Gasull, E. Hubbersand J. Llibre, A polynomial counterexample to the Markus–Yamabe conjecture, Adv. Math. 131 (1997), 453–457.
M. Cobo, C. Gutierrez and J. Llibre, On the injectivity of C 1 maps of the real plane, Canad. J. Math. 54 (2002), 1187–1201.
F. Fernandes, A new class of non-injective polynomial local diffeomorphisms on the plane, J. Math. Anal. Appl. 507 (2022), paper no. 125736, 5 pp.
R. Fessler, A proof of the two-dimensional Markus–Yamabe stability conjecture and a generalization, Ann. Polon. Math. 62 (1995), 45–74.
G. Gallavotti, The elements of mechanics, English transll.: from the Italian, Texts and Monographs in Physics. Springer–Verlag, Berlin, New York, 1983.
A.A. Glutsyuk, Complete solution of the Jacobian problem for planar vector fields, Uspekhi Mat. Nauk 49 (1994), 179–180 (in Russian); English transl.: Russian Math. Surveys 49 (1994), 185–186.
C. Gutierrez, A solution to the bidimensional global asymptotic stability conjecture, Ann. Inst. H. Poincaré Anal. Non Linéaire 12 (1995), 627–671.
C. Gutierrez and A. Sarmiento, Injectivity of C 1 maps R2 → R2 at infinity and planar vector fields, Geometric Methods in Dynamics (II): Volume in honor of Jacob Palis, Astérisque 287(2003), 89–102.
C. Gutierrez and N. Van Chau, A remark on an eigenvalue condition for the global injectivity of differentiable maps of R2 , Discrete Contin. Dyn. Syst. 17 (2007), 397–402.
J. Hadamard, Sur le correspondances ponctuelles, Oeuvres, Editions du Centre National de la Recherche Scientifique, Paris, 1968, pp. 383–384.
T. Kato, Perturbation Theory for Linear Operators, Springer–Verlag, Berlin, New York, 1995.
O.H. Keller, Ganze Cremona-Transformationen, Monats. Math. Physik 47 (1939), 299–306.
L. Markus and H. Yamabe, Global stability criteria for differential systems, Osaka Math. J. 12 (1960), 305–317.
S.I. Pinchuk, A counterexample to the strong real Jacobian conjecture, Math. Z. 217 (1994), 1–4.
R. Rabanal, An eigenvalue condition for the injectivity and asymptotic stability at infinity, Qual. Theory Dyn. Syst. 6 (2005), 233–250.
M. Sabatini, An extension to Hadamard global inverse function theorem in the plane, Nonlinear Anal. 20 (1993), 1069–1077.
A. van den Essen, Polynomial automorphisms and the Jacobian conjecture, Progress in Mathematics, vol. 190, Birkhäuser Verlag, Basel, 2000.
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Marco Sabatini
This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.
Stats
Number of views and downloads: 0
Number of citations: 0