Skip to main content Skip to main navigation menu Skip to site footer
  • Login
  • Language
    • English
    • Język Polski
  • Menu
  • Home
  • Current
  • Online First
  • Archives
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  • Login
  • Language:
  • English
  • Język Polski

Topological Methods in Nonlinear Analysis

Topological complexity of $S^3/Q_8$ as fibrewise L-S category
  • Home
  • /
  • Topological complexity of $S^3/Q_8$ as fibrewise L-S category
  1. Home /
  2. Archives /
  3. Vol 62, No 1 (September 2023) /
  4. Articles

Topological complexity of $S^3/Q_8$ as fibrewise L-S category

Authors

  • Norio Iwase https://orcid.org/0009-0007-3137-168X
  • Yuya Miyata https://orcid.org/0000-0002-8114-1803

DOI:

https://doi.org/10.12775/TMNA.2022.068

Keywords

Topological complexity, space form, quaternion group, python program

Abstract

In 2010, M. Sakai and the first author showed that the topological complexity of a space $X$ coincides with the fibrewise unpointed L-S category of a pointed fibrewise space $\proj_{1} \colon X \times X \to X$ with the diagonal map $\Delta \colon X \to X \times X$ as its section. In this paper, we describe our algorithm how to determine the fibrewise L-S category or the Topological Complexity of a topological spherical space form. Especially, for $S^3/Q_8$ where $Q_8$ is the quaternion group, we write a python code to realise the algorithm to determine its Topological Complexity.

References

A. Adem and R.J. Milgram, Cohomology of finite groups, Second, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 309, Springer–Verlag, Berlin, 2004.

D.J. Benson, Representations and Cohomology, II: Cohomology of Groups and Modules, Cambridge Studies in Advanced Mathematics, vol. 31, Cambridge University Press, Cambridge, 1991.

M. Farber, Topological complexity of motion planning, Discrete Comput. Geom. 29 (2003), no. 2, 211–221.

M. Farber and M. Grant, Robot motion planning, weights of cohomology classes, and cohomology operations, Proc. Amer. Math. Soc. 136 (2008), no. 9, 3339–3349.

K. Fujii, On the K-ring of S 4n+3 /Hm , Hiroshima Math. J. 3 (1973), 251–265.

N. Iwase and M. Sakai, Topological complexity is a fibrewise L- category, Topology Appl. 157 (2010), no. 1, 10–21.

N. Iwase, M. Sakai and M. Tsutaya, A short proof for tc(K) = 4, Topology Appl. 264 (2019), 167–174.

I.M. James, Introduction to fibrewise homotopy theory, Handbook of Algebraic Topology, 1995, pp. 169–194.

G. Segal, Categories and cohomology theories, Topology 13 (1974), 293–312.

K. Shimakawa, K. Yoshida and T. Haraguchi, Homology and cohomology via enriched bifunctors, Kyushu J. Math. 72 (2018), no. 2, 239–252.

G.W. Whitehead, Elements of Homotopy Theory, Graduate Texts in Mathematics, vol. 61, Springer–Verlag, New York, Berlin, 1978.

Downloads

  • PREVIEW
  • FULL TEXT

Published

2023-09-23

How to Cite

1.
IWASE, Norio and MIYATA, Yuya. Topological complexity of $S^3/Q_8$ as fibrewise L-S category. Topological Methods in Nonlinear Analysis. Online. 23 September 2023. Vol. 62, no. 1, pp. 239 - 265. [Accessed 29 June 2025]. DOI 10.12775/TMNA.2022.068.
  • ISO 690
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

Vol 62, No 1 (September 2023)

Section

Articles

License

Copyright (c) 2023 Norio Iwase, Yuya Miyata

Creative Commons License

This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.

Stats

Number of views and downloads: 0
Number of citations: 0

Search

Search

Browse

  • Browse Author Index
  • Issue archive

User

User

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo

Newsletter

Subscribe Unsubscribe
Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop