Skip to main content Skip to main navigation menu Skip to site footer
  • Login
  • Language
    • English
    • Język Polski
  • Menu
  • Home
  • Current
  • Online First
  • Archives
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  • Login
  • Language:
  • English
  • Język Polski

Topological Methods in Nonlinear Analysis

A planar Schrödinger-Poisson system with vanishing potentials and exponential critical growth
  • Home
  • /
  • A planar Schrödinger-Poisson system with vanishing potentials and exponential critical growth
  1. Home /
  2. Archives /
  3. Vol 62, No 1 (September 2023) /
  4. Articles

A planar Schrödinger-Poisson system with vanishing potentials and exponential critical growth

Authors

  • Francisco S. B. Albuquerque https://orcid.org/0000-0003-1861-5815
  • Jonison L. Carvalho
  • Marcelo F. Furtado https://orcid.org/0000-0002-8725-4286
  • Everaldo S. Medeiros https://orcid.org/0000-0001-7204-3040

DOI:

https://doi.org/10.12775/TMNA.2022.058

Keywords

Non-autonomous Schrödinger-Poisson system, unbounded potential, decaying potential, exponential critical growth, Trudinger-Moser inequality

Abstract

In this paper we look for ground state solutions of the elliptic system $$ \begin{cases} -\Delta u+V(x)u+\gamma\phi K(x)u = Q(x)f(u), &x\in\mathbb{R}^{2}, \\ \Delta \phi =K(x) u^{2}, &x\in\mathbb{R}^{2}, \end{cases} $$% where $\gamma> 0$ and the continuous potentials $V$, $K$, $Q$ satisfy some mild growth conditions and the nonlinearity $f$ has exponential critical growth. The key point of our approach is a new version of the Trudinger-Moser inequality for weighted Sobolev space.

References

F.S.B. Albuquerque, M.C. Ferreira and U.B. Severo, Ground state solutions for a nonlocal equation in R2 involving vanishing potentials and exponential critical growth, Milan J. Math. 89 (2021), 263–294 (2021), DOI: 10.1007/s00032-021-00334-x.

F.S. Albuquerque, J.L. Carvalho, G.M. Figueiredo and E.S. Medeiros, On a planar non-autonomous Schrödinger–Poisson system involving exponential critical growth, Calc. Var. Partial Differential Equations 60 (2021).

C.O. Alves and G.M. Figueiredo, Existence of positive solution for a planar Schrödinger–Poisson system with exponential growth, J. Math. Phys. 60 (2019), 011503.

C.O. Alves and M.A.S. Souto, Existence of least energy nodal solution for a Schrödinger–Poisson system in bounded domains, Z. Angew. Math. Phys. 65 (2014), 1153–1166.

A. Ambrosetti, V. Felli and A. Malchiodi, Ground states of nonlinear Schrödinger equations with potentials vanishing at infinity, J. Eur. Math. Soc. 7 (2005), 117–144.

A. Azzollini and A. Pomponio, Ground state solutions for the nonlinear Schrödinger–Maxwell equations, J. Math. Anal. Appl. 345 (2008), 90–108.

T. Bartsch, T. Weth and M. Willem, Partial symmetry of least energy nodal solutions to some variational problems, J. Anal. Math. 96 (2005), 1–18.

V. Benci and D. Fortunato, An eigenvalue problem for the Schrödinger–Maxwell equations, Topol. Methods Nonlinear Anal. 11 (1998), 283–293.

V. Benci and D. Fortunato, Solitary waves of the nonlinear Klein–Gordon equation coupled with Maxwell equations, Rev. Math. Phys. 14 (2002), 409–420.

D. Bonheure, S. Cingolani and S. Secchi, Concentration phenomena for the Schrödinger–Poisson system in R2 , Discrete Contin. Syn. Syst. Ser. S 14 (2021), 1631–1648.

D. Bonheure and J. Van Schaftingen, Bound state solutions for a class of nonlinear Schrödinger equations, Rev. Mat. Iberoam. 24 (2008), 297–351.

D. Bonheure and J. Van Schaftingen, Ground states for the nonlinear Schrödinger equation with potential vanishing at infinity, Ann. Mat. Pura Appl. 189 (2010), 273–301.

J. Carvalho, E. Medeiros and B. Ribeiro, On a planar Choquard equation involving exponential critical growth, Z. Angew. Math. Phys. 72 (2021), Article no. 188.

S.T. Chen, J.P. Shi and X.H. Tang, Ground state solutions of Nehari–Pohozaev type for the planar Schrödinger–Poisson system with general nonlinearity, Discrete Contin. Dyn. Syst. Ser. A 09 (2019), 5867–5889.

S.T. Chen and X.H. Tang, Existence of ground state solutions for the planar axially symmetric Schrödinger–Poisson system, Discrete Contin. Dyn. Syst. Ser. B 24 (2019), 4685–4702.

S.T. Chen and X.H. Tang, On the planar Schrödinger–Poisson system with the axially symmetric potentials, J. Differential Equations 268 (2020), 945–976.

S.T. Chen and X.H. Tang, Axially symmetric solutions for the planar Schrödinger–Poissson system with critical exponential growth, J. Differential Equations 269 (2020), 9144–9174.

G. Cerami and G. Vaira, Positive solutions for some non-autonomous Schrödinger–Poisson systems, J. Differential Equations 248 (2010), 521–543.

S. Cingolani and T. Weth, On the planar Schrödinger–Poisson system, Ann. Inst. H. Poincaré Anal. Non Linéaire 33 (2016), 169–197.

T. D’Aprile and D. Mugnai, Solitary waves for nonlinear Klein–Gordon–Maxwell and Schrödinger–Maxwell equations, Proc. Roy. Soc. Edinburgh Sect. A 134 (2004), 893–906.

J.M. do Ó, F. Sani and J. Zhang, Stationary nonlinear Schrödinger equations in R2 with potentials vanishing at infinity, Ann. Mat. Pura Appl. 196 (2017), 363–393.

M. Du and T. Weth, Ground states and high energy solutions of the planar Schrödinger–Poisson system, Nonlinearity 30 (2017), 3492–3515.

D. Gilbarg and N.S. Trudinger, Elliptic Partial Differential Equations of Second Order Classics in Mathematics, Springer–Verlag, Berlin, 2001, reprint of the 1998 edition.

I. Ianni and G. Vaira, On concentration of positive bound states for the Schrödinger–Poisson problem with potentials, Adv. Nonlinear Stud. 8 (2008), 573–595.

E.H. Lieb, Existence and uniqueness of the minimizing solution of Choquard’s nonlinear equation, Stud. Appl. Math. 57 (1976/1977), 93–105.

P.L. Lions, Solutions of Hartree–Fock equations for Coulomb systems, Commun. Math. Phys. 109 (1984), 33–97.

L. Ma and L. Zhao, Classification of positive solitary solutions of the nonlinear Choquard equation, Arch. Ration. Mech. Anal. 195 (2010), 455–467.

B. Opic and A. Kufner, Hardy-Type Inequalities, Pitman Research Notes in Mathematics Series, vol. 219, Longman Scientific and Technical, Harlow, 1990.

D. Ruiz, The Schrödinger–Poisson equation under the effect of a nonlinear local term, J. Funct. Anal. 237 (2006), 655–674.

J. Stubbe, Bound states of two-dimensional Schrödinger–Newton equations, preprint, (2008), arxiv.org/abs/0807.4059.

J. Su, Z.Q. Wang and M. Willem, Nonlinear Schrödinger equations with unbounded and decaying radial potentials, Commun. Contemp. Math. 9 (2007), 571–583.

J. Su, Z.Q. Wang and M. Willem, Weighted Sobolev embedding with unbounded and decaying radial potentials, J. Differential Equations 238 (2007), 201–219.

N.S. Trudinger, On imbeddings into Orlicz spaces and some applications, J. Math. Mech. 17 (1967), 473–483.

Y. Yang and X. Zhu, A new proof of subcritical Trudinger–Moser inequalities on whole Euclidean space, J. Partial Differential Equations 26 (2013), 300–304.

Downloads

  • PREVIEW
  • FULL TEXT

Published

2023-09-23

How to Cite

1.
ALBUQUERQUE, Francisco S. B., CARVALHO, Jonison L., FURTADO, Marcelo F. and MEDEIROS, Everaldo S. A planar Schrödinger-Poisson system with vanishing potentials and exponential critical growth. Topological Methods in Nonlinear Analysis. Online. 23 September 2023. Vol. 62, no. 1, pp. 159 - 180. [Accessed 28 June 2025]. DOI 10.12775/TMNA.2022.058.
  • ISO 690
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

Vol 62, No 1 (September 2023)

Section

Articles

License

Copyright (c) 2023 Francisco S. B. Albuquerque, Jonison L. Carvalho, Marcelo F. Furtado, Everaldo S. Medeiros

Creative Commons License

This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.

Stats

Number of views and downloads: 0
Number of citations: 0

Search

Search

Browse

  • Browse Author Index
  • Issue archive

User

User

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo

Newsletter

Subscribe Unsubscribe
Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop