Skip to main content Skip to main navigation menu Skip to site footer
  • Login
  • Language
    • English
    • Język Polski
  • Menu
  • Home
  • Current
  • Online First
  • Archives
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  • Login
  • Language:
  • English
  • Język Polski

Topological Methods in Nonlinear Analysis

Analysis of the Hopf bifurcation in a Diffusive Gierer-Meinhardt Model
  • Home
  • /
  • Analysis of the Hopf bifurcation in a Diffusive Gierer-Meinhardt Model
  1. Home /
  2. Archives /
  3. Vol 62, No 1 (September 2023) /
  4. Articles

Analysis of the Hopf bifurcation in a Diffusive Gierer-Meinhardt Model

Authors

  • Rasoul Asheghi

DOI:

https://doi.org/10.12775/TMNA.2022.050

Keywords

Gierer-Meinhardt model, Hopf bifurcation, reaction-diffusion, center manifold, normal form

Abstract

In this work, we consider an activator-inhibitor system, known as the Gierer-Meinhardt model. Using the linear stability analysis at the unique positive equilibrium, we derive the conditions of the Hopf bifurcation. We compute the normal form of this bifurcation up to the third degree and obtain the direction of the Hopf bifurcation. Finally, we provide numerical simulations to illustrate the theoretical results of this paper. In this study, we will use the technique of normal form and center manifold theorem.

References

S.S. Chen, J.P. Shi and J.J. Wei, Bifurcation analysis of the Gierer–Meinhardt system with saturation in the activator production, Appl. Anal. 93 (2014), 1115–1134.

M. Chen, R. Wu and L. Chen, Pattern dynamics in a diffusive Gierer–Meinhardt model, Int. J. Bifurcation and Chaos 30 (2020), 2030035.

N.T. Fadai, M.J. Ward and J.C. Wei, Delayed reaction kinetic and the stability of spikes in the Gierer–Meinhardt model, SIAM J. Appl. Math. 77 (2017), 664–696.

A. Gierer and H. Meinhardt, A theory of biological pattern formation, Kybernetik 12 (1972), 30–39.

M. Haragus and G. Iooss, Local Bifurcations, Center Manifolds, and Normal Forms in Infinite-Dimensional Dynamical Systems, Universitext, Springer, London, Dordrecht, Heidelberg, New York, 2011.

Y. Li, J. Wang and X. Hou, Stripe and spot patterns for general Gierer–Meinhardt model with common sources, Int. J. Bifurcation and Chaos 27 (2017a), 1750018.

Y. Li, J. Wang and X.Hou, Stripe and spot patterns for the Gierer–Meinhardt model with saturated activator production, J. Math. Anal. Appl. 449 (2017b), 1863–1879.

J.X. Liu, F.Q. Yi and J.J. Wei, Multiple bifurcation analysis and spatiotemporal patterns in a 1-D Gierer–Meinhardt model of morphogenesis, Int. J. Bifurcation and Chaos 20 (2010), 1007–1025.

Y.L. Song, R. Yang and G.Q. Sun, Pattern dynamics in a Gierer-Meinhardt model with a saturating term, Appl. Math. Model. 46 (2017), 476–491.

A. Turing, The chemical basis of morphogenesis, Philos. Trans. R. Soc. B-Biol. Sci. 237 (1952), 37–72.

J.L. Wang, Y. Li, S.H. Zhong and X.J. Hou, Analysis of bifurcation, chaos and pattern formation in a discrete-time and space Gierer–Meinhardt system, Chaos Solittons Fractals 118 (2019), 1–17.

J. Wei and M. Winter, Mathematical Aspects of Pattern Formation in Biological Systems, Applied Mathematical Sciences, Springer–Verlag, London, 2014.

R. Wu, Y. Zhou, Y. Shao and L.Chen, Bifurcation and Turing patterns of reactiondiffusion activator-inhibitor model, Physica A 482 (2017), 597–610.

X.P. Yan, Y.J. Ding and C.H. Zhang, Dynamics analysis in a Gierer–Meinhardt reaction-diffusion model with homogeneous Neumann boundary condition, Int. J. Bifurcation and Chaos 29 (2019), 1930025.

N. Yana, Explicitly solvable eigenvalue problem and bifurcation delay in sub-diffusive Gierer–Meinhardt model, Eur. J. Appl. Math. 27 (2016), 699–725.

R. Yang and Y.L. Song, Spatial resonance and Turing–Hopf bifurcations in the Gierer–Meinhardt model, Nonlinear Anal. 31 (2016), 356–387.

Downloads

  • PREVIEW
  • FULL TEXT

Published

2023-09-23

How to Cite

1.
ASHEGHI, Rasoul. Analysis of the Hopf bifurcation in a Diffusive Gierer-Meinhardt Model. Topological Methods in Nonlinear Analysis. Online. 23 September 2023. Vol. 62, no. 1, pp. 83 - 104. [Accessed 13 December 2025]. DOI 10.12775/TMNA.2022.050.
  • ISO 690
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

Vol 62, No 1 (September 2023)

Section

Articles

License

Copyright (c) 2023 Rasoul Asheghi

Creative Commons License

This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.

Stats

Number of views and downloads: 0
Number of citations: 0

Search

Search

Browse

  • Browse Author Index
  • Issue archive

User

User

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo

Newsletter

Subscribe Unsubscribe
Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop