Skip to main content Skip to main navigation menu Skip to site footer
  • Login
  • Language
    • English
    • Język Polski
  • Menu
  • Home
  • Current
  • Online First
  • Archives
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  • Login
  • Language:
  • English
  • Język Polski

Topological Methods in Nonlinear Analysis

Three positive solutions for the indefinite fractional Schrödinger-Poisson systems
  • Home
  • /
  • Three positive solutions for the indefinite fractional Schrödinger-Poisson systems
  1. Home /
  2. Archives /
  3. Vol 62, No 1 (September 2023) /
  4. Articles

Three positive solutions for the indefinite fractional Schrödinger-Poisson systems

Authors

  • Guofeng Che
  • Tsung-fang Wu https://orcid.org/0000-0003-4945-652X

DOI:

https://doi.org/10.12775/TMNA.2022.046

Keywords

Fractional Schrödinger-Poisson systems, Nehari manifold, multiple positive solutions, variational methods

Abstract

In this paper, we are concerned with the following fractionalSchrödinger-Poisson systems with concave-convex nonlinearities: \begin{equation*} \begin{cases} (-\Delta )^{s}u+u+\mu l(x)\phi u=f(x)|u|^{p-2}u+g(x)|u|^{q-2}u & \text{in }\mathbb{R}^{3}, \\ (-\Delta )^{t}\phi =l(x)u^{2} & \text{in }\mathbb{R}^{3},% \end{cases} \end{equation*} where ${1}/{2}< t\leq s< 1$, $1< q< 2< p< \min \{4,2_{s}^{\ast }\}$, $2_{s}^{\ast }={6}/({3-2s})$, and $\mu > 0$ is a parameter, $f\in C\big(\mathbb{R}^{3}\big)$ is sign-changing in $\mathbb{R}^{3}$ and $g\in L^{p/(p-q)}\big(\mathbb{R}^{3}\big)$. Under some suitable assumptions on $l(x)$, $f(x)$ and $g(x)$, we explore that the energy functional corresponding to the system is coercive and bounded below on $H^{\alpha }\big(\mathbb{R}^{3}\big)$ which gets a positive solution. Furthermore, we constructed some new estimation techniques, and obtained other two positive solutions. Recent results from the literature are generally improved and extended.

References

A. Ambrosetti, Multiplicity and concentration results for a class of critical fractional Schrödinger–Poisson systems via penalization method, Commun. Contemp. Math. 22 (2020), 1850078.

A. Ambrosetti and D. Ruiz, Multiple bound states for the Schrödinger–Poisson problem, Commun. Contemp. Math. 10 (2008), 391–404.

L. Appolloni and S. Secchi, Normalized solutions for the fractional NLS with mass supercritical nonlinearity, J. Differential Equations 286 (2021), 248–283.

T. Bartsch and Z.Q. Wang, Existence and multiplicity results for some superlinear elliptic problems on RN , Comm. Partial Differential Eqautions 20 (1995), 1725–1741.

V. Benci and D. Fortunato, An eigenvalue problem for the Schrödinger–Maxwell equations, Topol. Methods Nonlinear Anal. 11 (1998), 283–293.

K.J. Brown and W.F. Wu, A fibering map approach to a semilinear elliptic boundary value problem, Electron. J. Differential Equations 69 (2007), 1–9.

K.J. Brown and W.F. Wu, A fibering map approach to a potential operator equation and its applications, Differ. Integral Equ. 22 (2009), 1097–1114.

K.J. Brown and Y. Zhang, The Nehari manifold for a semilinear elliptic equation with a sign–changing weight function, J. Differential Equations 193 (2003), 481–499.

G. Cerami and G. Vaira, Positive solutions for some non-autonomos Schrödinger–Poisson systems, J. Differential Equations 248 (2010), 521–543.

X. Chang, Ground states of some fractional Schrödinger equations on RN , Proc. Edinb. Math. Soc. 58 (2015), 305–321.

G. Che and H.B. Chen, Multiplicity and concentration of solutions for fractional Schrödinger–Poisson system with sign-changing potential, Appl. Anal. 102 (2023), 253–274.

G. Che and H.B. Chen, Existence and concentration of solutions for the sublinear fractional Schrödinger–Poisson system, Bull. Malays. Math. Sci. Soc. 45 (2022), 2843–2863.

R. Cont and P. Tankov, Financial Modeling with Jump Processes, Financial Mathematics Series, Chapman Hall/CRC. Boca Raton, 2004.

P. Drábek and S.I. Pohozaev, Positive solutions for the p-Laplacian: application of the fibering method, Proc. Roy. Soc. Edinburgh Sect. A. 127 (1997), 703–726.

I. Ekeland, On the variational principle, J. Math. Anal. Appl. 17 (1974), 324–353.

P. Felmer, A. Quaas and J. Tan, Positive solutions of the nonlinear Schrödinger equation with the fractional Laplacian, Proc. Roy. Soc. Edinburgh Sect. A 142 (2012), 1237–1262.

R.L. Frank, E. Lenzmann and L. Silvestre, Uniqueness of radial solutions for the fractional Laplacian, Commun. Pure Appl. Math. 69 (2016), 1671–1726.

C. Ji, Ground state sign-changing solutions for a class of nonlinear fractional Schrödinger–Poisson system in R3 , Ann. Mat. Pure Appl. 198 (2019), 1563–1579.

N. Laskin, Fractional quantum mechanics and Lévy path integrals, Phys. Lett. A 268 (2000), 298–305.

N. Laskin, Fractional Schrödinger equations, Phys. Rev. 66 (2002), 56–108.

P.L. Lions, Solutions of Hartree–Fock equations for Coulomb systems, Comm. Math. Phys. 109 (1984), 33–97.

Z. Liu and Z. Ouyang, Existence of positive ground state solutions for fractional Schrödinger equations with a general nonlinearity, Appl. Anal. 97 (2018), 1154–1171.

Z. Liu and J. Zhang, Multiplicity and concentration of positive solutions for the fractional Schrödinger–Poisson systems with critical growth, ESAIM Control Optim. Calc. Var. 23 (2017), 1515–1542.

R. Metzler and J. Klafter, The random walls guide to anomalous diffusion: a fractional dynamics approach, Phys. Rep. 339 (2000), 1–77.

E.G. Murcia and G. Siciliano, Positive semiclassical states for a fractional Schrödinger–Poisson system, Differ. Integral Equ. 30 (2017), 231–258.

D. Ruiz, The Schrödinger–Poisson equation under the effect of a nonlinear local term, J. Funct. Anal. 237 (2006), 655–674.

M. Shao and A. Mao, Schrödinger–Poisson system with concave-convex nonlinearities, J. Math. Phys. 60 (2019), 061504.

L. Silvestre, Regularity of the obstacle problem for a fractional power of the Laplace operator, Commun. Pure Appl. Math. 60 (2007), 67–112.

J. Sun and T.F. Wu, On Schrödinger–Poisson systems involving concave–convex nonlinearities via a novel constraint approach, Commun. Contemp. Math. 23 (2021), 2050048.

J. Sun, T.F. Wu and Z. Feng, Multiplicity of positive solutions for a nonlinear Schrödinger–Poisson system, J. Differential Equations 260 (2016), 586–627.

G. Tarantello, On nonhomogeneous elliptic equations involving critical Sobolev exponent, Ann. Inst. H. Poincaré Anal. Non Linéaire 9 (1992), 281–304.

K. Teng, Existence of ground state solutions for the nonlinear fractional Schrödinger–Poisson system with critical Sobolev exponent, J. Differential Equations 261 (2016), 3061–3106.

L. Wang, V.R. Rǎdulescu and B. Zhang, Infinitely many solutions for fractional Kirchhoff–Schrödinger–Poisson systems, J. Math. Phys. 60 (2019), 011506.

M. Willem, Minimax Theorems. Progress in Nonlinear Differential Equations and their Applications, Birkhäuser Boston Inc. Boston, 1996.

T.F. Wu, Existence and symmetry breaking of ground state solutions for Schrödinger–Poisson system, Calc. Var. Partial Differerential Equations 60 (2021), 59.

Y. Yu, F. Zhao and L. Zhao, The existence and multiplicity of solutions of a fractional Schrödinger–Poisson system with critical growth, Sci. China Math. 61 (2018), 1039–1062.

J.J. Zhang, J.M. do Ó and M. Squassina, Fractional Schrödinger–Poisson system with a general subcritical or critical nonlinearity, Adv. Nonlinear Stud. 16 (2016), 15–30.

Downloads

  • PREVIEW
  • FULL TEXT

Published

2023-09-23

How to Cite

1.
CHE, Guofeng and WU, Tsung-fang. Three positive solutions for the indefinite fractional Schrödinger-Poisson systems. Topological Methods in Nonlinear Analysis. Online. 23 September 2023. Vol. 62, no. 1, pp. 53 - 81. [Accessed 29 June 2025]. DOI 10.12775/TMNA.2022.046.
  • ISO 690
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

Vol 62, No 1 (September 2023)

Section

Articles

License

Copyright (c) 2023 Guofeng Che, Tsung-fang Wu

Creative Commons License

This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.

Stats

Number of views and downloads: 0
Number of citations: 0

Search

Search

Browse

  • Browse Author Index
  • Issue archive

User

User

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo

Newsletter

Subscribe Unsubscribe
Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop