Skip to main content Skip to main navigation menu Skip to site footer
  • Login
  • Language
    • English
    • Język Polski
  • Menu
  • Home
  • Current
  • Online First
  • Archives
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  • Login
  • Language:
  • English
  • Język Polski

Topological Methods in Nonlinear Analysis

Existence of saddle-type solutions for a class of quasilinear problems in R^2
  • Home
  • /
  • Existence of saddle-type solutions for a class of quasilinear problems in R^2
  1. Home /
  2. Archives /
  3. Vol 61, No 2 (June 2023) /
  4. Articles

Existence of saddle-type solutions for a class of quasilinear problems in R^2

Authors

  • Claudianor O. Alves
  • Renan J. S. Isneri
  • Piero Montecchiari

DOI:

https://doi.org/10.12775/TMNA.2022.039

Keywords

Variational methods, quasilinear elliptic equations, heteroclinic solutions

Abstract

The main goal of the present paper is to prove the existence of saddle-type solutions for the following class of quasilinear problems $$ -\Delta_{\Phi}u + V'(u)=0\quad \text{in }\mathbb{R}^2, $$% where $$ \Delta_{\Phi}u=\text{div}(\phi(|\nabla u|)\nabla u), $$% $\Phi\colon \mathbb{R}\rightarrow [0,+\infty)$ is an N-function and the potential $V$ satisfies some technical condition and we have as an example $ V(t)=\Phi(|t^2-1|)$.

References

A. Adams and J.F. Fournier, Sobolev Spaces, Academic Press, 2003.

S. Alama, L. Bronsard and C. Gui, Stationary layered solutions in R2 for an Allen–Cahn system with multiple well potential, Calc. Var. Partial Differential Equations 5 (1997), no. 4, 359–390.

F. Alessio, A. Calamai and P. Montecchiari, Saddle-type solutions for a class of semilinear elliptic equations, Adv. Differential Equations 12 (2007), 361–380.

F. Alessio, C. Gui and P. Montecchiari, Saddle solutions to Allen–Cahn equations in doubly periodic media, Indiana Univ. Math. J. 65 (2016), 199–221.

F. Alessio and P. Montecchiari, Saddle solutions for bistable symmetric semilinear elliptic equations, NoDEA Nonlinear Differential Equations Appl. 20 (2013), no. 3, 1317–1346.

F. Alessio and P. Montecchiari, Layered solutions with multiple asymptotes for non autonomous Allen–Cahn equations in R3 , Calc. Var. Partial Differential Equations 46 (2013), no. 3–4, 591–622.

F. Alessio and P. Montecchiari, Multiplicity of layered solutions for Allen–Cahn systems with symmetric double well potential, J. Differential Equations 257 (2014), no. 12, 4572–4599.

F. Alessio, P. Montecchiari and A. Sfecci, Saddle solutions for a class of systems of periodic and reversible semilinear elliptic equations, Netw. Heterog. Media 14.3 (2019), 567.

C.O. Alves, Existence of heteroclinic solution for a class of non-autonomous second-order equation, NoDEA Nonlinear Differential Equations Appl. 22 (2015), no. 5, 1195–1212.

C.O. Alves, Existence of a heteroclinic solution for a double well potential equation in an infinite cylinder of RN , Adv. Nonlinear Stud. (208), 14 pp.

D. Bonheure and L. Sanchez, Heteroclinic orbits for some classes of second and fourth order differential equations, Handbook of Differential Equations: Ordinary Differential Equations, vol. 3, North-Holland, 2006, pp. 103–202.

H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equations, Springer, New York, 2011.

J. Byeon, P. Montecchiari and P.H. Rabinowitz, A double well potential system, Anal. Partial Differential Equations 9 (2016), no. 7, 1737–1772.

G. Dal Maso and F. Murat, Almost everywhere convergence of gradients of solutions to nonlinear elliptic systems, Nonlinear Anal. 31 (1998), 405–412.

H. Dang, P.C. Fife and L.A. Peletier, Saddle solutions of the bistable diffusion equation, Z. Angew. Math. Phys. 43 (1992), no. 6, 984–998.

M. Del Pino, P. Drábek and R. Manásevich, The Fredholm alternative at the first eigenvalue for the one dimensional p-Laplacian, J. Differential Equations 151 (1999), 386–419.

M. Del Pino, M. Elgueta and R. Manásevich, A homotopic deformation along p of a Leray–Schauder degree result and existence for (|u0 |p−2 u0 )0 +f (t, u) = 0, u(0) = u(T ) = 0, p > 1, J. Differential Equations 80 (1989), 1–13.

M. Fuchs and G. Seregin, A regularity theory for variational integrals with L log Lgrowth, Calculus Var. Partial Differential Equations 6 (1998), 171–187.

M. Fuchs and G. Seregin, Variational methods for fluids of Prandtl–Eyring type and plastic materials with logarithmic hardening, Math. Methods Appl. Sci.22 (1999), 317–351.

N. Fukagai, M. Ito and K. Narukawa, Quasilinear elliptic equations with slowly growing principal part and critical Orlicz–Sobolev nonlinear term, Proc. Roy. Soc. Edinburgh Sect. A 139 (2009), 73–106.

N. Fukagai, M. Ito and K. Narukawa, Positive solutions of quasilinear elliptic equations with critical Orlicz–Sobolev nonlinearity on RN , Funckc. Ekv. 49 (2006), 235–267.

N. Fukagai and K. Narukawa, Nonlinear eigenvalue problem for a model equation of an elastic surface, Hiroshima Math. J. 25 (1995), no. 1, 19–41.

A. Gavioli, On the existence of heteroclinic trajectories for asymptotically autonomous equations, Topol. Methods Nonlinear Anal. 34 (2009), 251–266.

A. Gavioli, Monotone heteroclinic solutions to non-autonomous equations via phase plane analysis, Nonlinear Differ. Equ. Appl. 18 (2011), 79–100.

B.H. Gilding and R. Kersner, Travelling Waves in Nonlinear Diffusion-ConvectionReaction, Birkhäuser, Basel, 2004.

C. He and G. Li, The existence of a nontrivial solution to the p&q-Laplacian problem with nonlinearity asymptotic to u p − 1 at infinity in RN , Nonlinear Anal. 68 (2008), 1100–1119.

C. He and G. Li, The existence of a nontrivial solution to the p&q-Laplacian problem with nonlinearity asymptotic to u p − 1 at infinity in RN , Nonlinear Anal. 68 (2008), 1100–1119.

G.M. Lieberman, The natural generalization of the natural conditions of Ladyzhenskaya and Uralt́seva for elliptic equations, Comm. Partial Differential Equations 16 (1991), 311–361.

C. Marcelli and L. Malaguti, Heteroclinic orbits in plane dynamical systems, Arch. Math. (Brno) 38 (2002), 183–200.

C. Marcelli and F. Papalini, Heteroclinic connections for fully non-linear nonautonomous second-order differential equations, J. Differential Equations 241 (2007), 160–183.

F. Minhós, Sufficient conditions for the existence of heteroclinic solutions for φ-Laplacian differential equations, Complex Var. Elliptic Equ. 62 (2017), no. 1, 123–134.

F. Minhós, Heteroclinic solutions for classical and singular φ-Laplacian non-autonomous differential equations, Axioms 8.1 (2019), 22 pp.

F. Minhós, On heteroclinic solutions for BVPs involving φ-Laplacian operators without asymptotic or growth assumptions, Math. Nachr. 292 (2019), no. 4, 850–858.

I. Peral, Multiplicity of solutions for the p-Laplacian, International Center for Theoretical Physics Lecture Notes, Trieste, 1997.

P.H. Rabinowitz, Periodic and heteroclinic orbits for a periodic Hamiltonian system, Ann. Inst. H. Poincaré C, Anal. Non Linéaire, Elsevier Masson, 1989, pp. 331–346.

P.H. Rabinowitz, Solutions of heteroclinic type for some classes of semilinear elliptic partial differential equations, J. Math. Sci. Univ. Tokyo 1 (1994), no. 3, 525–550.

P.H. Rabinowitz and E. Stredulinsky, Mixed states for an Allen–Cahn type equation, Comm. Pure Appl. Math. 56 (2003), no. 8, 1078–1134.

P.H. Rabinowitz and E. Stredulinsky, Mixed states for an Allen–Cahn type equation II, Calc. Var. Partial Differential Equations 21 (2004), no. 2, 157–207.

M.N. Rao and Z.D. Ren, Theory of Orlicz Spaces, Marcel Dekker, New York, 1985.

Y.L. Ruan, A tale of two approaches to heteroclinic solutions for Φ-Laplacian systems, Proc. Roy. Soc. Edinburgh Sect. A Math. 150 (2020), no. 5, 2535–2572.

W. Rudin, Real and Complex Analysis, 3rd ed., McGraw Hill, NewYork, 1987.

M. Schatzman and C. Gui, Symmetric quadruple phase transitions, Indiana Univ. Math. J. 57 (2008), no. 2, 781–836.

N.S. Trudinger, On Harnack type inequalities and their applicatoin to quasilinear elliptic equations, Comm. Pure Appl. Math. 20 (1967), 721–747.

Downloads

  • PREVIEW
  • FULL TEXT

Published

2023-07-16

How to Cite

1.
ALVES, Claudianor O., ISNERI, Renan J. S. and MONTECCHIARI, Piero. Existence of saddle-type solutions for a class of quasilinear problems in R^2. Topological Methods in Nonlinear Analysis. Online. 16 July 2023. Vol. 61, no. 2, pp. 825 - 868. [Accessed 29 June 2025]. DOI 10.12775/TMNA.2022.039.
  • ISO 690
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

Vol 61, No 2 (June 2023)

Section

Articles

License

Copyright (c) 2023 Claudianor O. Alves, Renan J. S. Isneri, Piero Montecchiari

Creative Commons License

This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.

Stats

Number of views and downloads: 0
Number of citations: 0

Search

Search

Browse

  • Browse Author Index
  • Issue archive

User

User

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo

Newsletter

Subscribe Unsubscribe
Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop