On a class of weighted anisotropic p-Laplace equation with singular nonlinearity
DOI:
https://doi.org/10.12775/TMNA.2022.037Keywords
Weighted anisotropic problem, singular nonlinearity, existence, p-admissible weights, variational method, approximation techniqueAbstract
We consider a class of singular weighted anisotropic p-Laplace equations. We provide sufficient condition on the weight function that may vanish or blow up near the origin to ensure the existence of at least one weak solution in the purely singular case and at least two different weak solutions in the purturbed singular case.References
H. Aimar, M. Carena, R. Durán and M. Toschi, Powers of distances to lower dimensional sets as Muckenhoupt weights, Acta Math. Hungar. 143 (2014), no. 1, 119–137.
A. Alvino, V. Ferone, G. Trombetti and P.L. Lions, Convex symmetrization and applications, Ann. Inst. H. Poincaré Anal. Non Linéaire 14 (1997), no. 2, 275–293.
D. Arcoya and L. Boccardo, Multiplicity of solutions for a Dirichlet problem with a singular and a supercritical nonlinearities, Differential Integral Equations 26 (2013), no. 1–2, 119–128.
D. Arcoya and L.M. Mérida, Multiplicity of solutions for a Dirichlet problem with a strongly singular nonlinearity, Nonlinear Anal. 95 (2014), 281–291.
K. Bal and P. Garain, Weighted anisotropic Sobolev inequality with extremal and associated singular problems, Differential Integral Equations 36 (2023), no. 1, 59–92.
K. Bal, P. Garain and T. Mukherjee, On an anisotropic p-Laplace equation with variable singular exponent, Adv. Differential Equations 26 (2021), no. 11–12, 535–562.
M. Belloni, V. Ferone and B. Kawohl, Isoperimetric inequalities, Wulff shape and related questions for strongly nonlinear elliptic operators, Zeitschrift für angewandte Mathematik und Physik ZAMP 54 (2023), 771–783. (special issue dedicated to Lawrence E. Payne)
M. Belloni, B. Kawohl and P. Juutinen, The p-Laplace eigenvalue problem as p → ∞ in a Finsler metric, J. Eur. Math. Soc. (JEMS) 8 (2006), no. 1, 123–138.
C. Bianchini and G. Ciraolo, Wulff shape characterizations in overdetermined anisotropic elliptic problems, Comm. Partial Differential Equations 43 (2018), 790–820.
T. Biset, B. Mebrate and A. Mohammed, A boundary-value problem for normalized Finsler infinity-Laplacian equations with singular nonhomogeneous terms, Nonlinear Anal. 190 (2020), 111588.
L. Boccardo and L. Orsina, Semilinear elliptic equations with singular nonlinearities, Calc. Var. Partial Differential Equations 37 (2010), no. 3–4, 363–380.
A. Canino, B. Sciunzi and A. Trombetta, Existence and uniqueness for p-Laplace equations involving singular nonlinearities, NoDEA Nonlinear Differential Equations Appl. 23 (2016), no. 2, Art. 8, 18 pp.
A. Cianchi and P. Salani, Overdetermined anisotropic elliptic problems, Math. Ann. 345 (2009), no. 4, 859–881.
M.G. Crandall, P.H. Rabinowitz and L. Tartar, On a Dirichlet problem with a singular nonlinearity, Comm. Partial Differential Equations 2(1977), no. 2, 193–222.
L.M. De Cave, Nonlinear elliptic equations with singular nonlinearities, Asymptot. Anal. 84 (2013), no. 3–4, 181–195.
S. Dipierro, G. Poggesi and E. Valdinoci, Radial symmetry of solutions to anisotropic and weighted diffusion equations with discontinuous nonlinearities, arXiv e-prints, arXiv: 2105.02424, May 2021.
P. Drábek, A. Kufner and F. Nicolosi, Quasilinear Elliptic Equations with Degenerations and Singularities, De Gruyter Series in Nonlinear Analysis and Applications, vol. 5, Walter de Gruyter & Co., Berlin, 1997.
R.G. Durán and F.L. Garcı́a, Solutions of the divergence and analysis of the Stokes equations in planar Hölder-α domains, Math. Models Methods Appl. Sci. 20 (2010), no. 1, 95–120.
R.G. Durán, M. Sanmartino and M. Toschi, Weighted a priori estimates for the Poisson equation, Indiana Univ. Math. J. 57 (2008), no. 7, 3463–3478.
C. Farkas, A. Fiscella and P. Winkert, Singular Finsler double phase problems with nonlinear boundary condition, arXiv e-prints, arXiv: 2102.05467, February 2021.
C. Farkas and P. Winkert, An existence result for singular Finsler double phase problems, arXiv e-prints, arXiv: 2011.03774, November 2020.
V. Ferone and B. Kawohl, Remarks on a Finsler–Laplacian, Proc. Amer. Math. Soc. 137 (2009), no. 1, 247–253.
P. Garain, On a degenerate singular elliptic problem, Math. Nachr. 295 (2022), no. 7, 1354–1377.
P. Garain, Weighted singular problem with variable singular exponent and p-admissible weights, arXiv e-prints, arXiv:2110.12049, October 2021.
P. Garain and J. Kinnunen, Nonexistence of variational minimizers related to a quasilinear singular problem in metric measure spaces, Proc. Amer. Math. Soc. 149 (2021), no. 8, 3407–3416.
P. Garain and T. Mukherjee, On a class of weighted p-Laplace equation with singular nonlinearity, Mediterr. J. Math. 17 (2020), no. 4, paper no. 110, 18 pp.
M. Ghergu and V.D. Rădulescu, Singular Elliptic Problems:Bifurcation and Asymptotic Analysis, Oxford Lecture Series in Mathematics and its Applications, vol. 37, The Clarendon Press, Oxford University Press, Oxford, 2008.
J. Giacomoni, I. Schindler and P. Takáč, Sobolev versus Hölder local minimizers and existence of multiple solutions for a singular quasilinear equation, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 6 (2007), no. 1, 117–158.
Y. Haitao, Multiplicity and asymptotic behavior of positive solutions for a singular semilinear elliptic problem, J. Differential Equations 189 (2003), no. 2, 487–512.
T. Hara, Trace inequalities of the Sobolev type and nonlinear Dirichlet problems, arXiv e-prints, arXiv: 2102.09697, February 2021.
J. Heinonen, T. Kilpeläinen and O. Martio, Nonlinear potential theory of degenerate elliptic equations, Oxford Mathematical Monographs, Oxford Science Publications, The Clarendon Press, Oxford University Press, New York, 1993.
B. Kawohl and M. Novaga, The p-Laplace eigenvalue problem as p → 1 and Cheeger sets in a Finsler metric, J. Convex Anal. 15 (2008), no. 3, 623–634.
T. Kilpeläinen, Weighted S obolev spaces and capacity, Ann. Acad. Sci. Fenn. Ser. A I Math. 19 (1994), no. 1, 95–113.
D. Kinderlehrer and G. Stampacchia, An Introduction to Variational Inequalities and their Applications, Pure and Applied Mathematics, vol. 88, Academic Press, Inc., Harcourt Brace Jovanovich, Publishers, New York, London, 1980.
E. Ko, E.K. Lee and R. Shivaji, Multiplicity results for classes of infinite positone problems, Z. Anal. Anwend. 30 (2011), no. 3, 305–318.
P. Lindqvist, Addendum: “On the equation div(|∇u|p−2 ∇u) + λ|u|p−2 u = 0” [Proc. Amer. Math. Soc. 109 (1990), no. 1, 157–164; MR1007505 (90h:35088)] Proc. Amer. Math. Soc. 116 (1992), no. 2, 583–584.
I.I. Mezei and O. Vas, Existence results for some Dirichlet problems involving Finsler–Laplacian operator, Acta Math. Hungar. 157 (2019), no. 1, 39–53.
P. Mikkonen, On the W olff potential and quasilinear elliptic equations involving measures, Ann. Acad. Sci. Fenn. Math. Diss. 104 (1996), 71.
F. Oliva and F. Petitta, On singular elliptic equations with measure sources, ESAIM Control Optim. Calc. Var. 22 (2016), no. 1, 289–308.
L. Orsina and F. Petitta, A Lazer–McKenna type problem with measures, Differential Integral Equations 29 (2016), no. 1–2, 19–36.
I. Peral, Multiplicity of solutions for the p-Laplacian, Lecture Notes at the Second School on Nonlinear Functional Analysis and Applications to Differential Equations (ICTP, Trieste) ICTP Lecture Notes, 1997.
C. Xia, On a class of anisotropic problems, Dissertation zur Erlangung des Doktorgrades der Fakultät Mathematik und Physik der Albert-Ludwigs-Universität Freiburg im Breisgau, 2012, https://freidok.uni-freiburg.de/fedora/objects/freidok:8693/datastreams/FILE1/content.
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Prashanta Garain
This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.
Stats
Number of views and downloads: 0
Number of citations: 0