Critical Kirchhoff-type equation with singular potential
DOI:
https://doi.org/10.12775/TMNA.2022.051Keywords
Kirchhoff-type equation, Lions-type theorem, singular potential, critical exponentAbstract
In this paper, we deal with the following Kirchhoff-type equation: \begin{equation*} -\bigg(1 +\int_{\mathbb{R}^{3}}|\nabla u|^{2}dx\bigg) \Delta u +\frac{A}{|x|^{\alpha}}u =f(u),\quad x\in\mathbb{R}^{3}, \end{equation*} where $A> 0$ is a real parameter and $\alpha\in(0,1)\cup ({4}/{3},2)$. Remark that $f(u)=|u|^{2_{\alpha}^{*}-2}u +\lambda|u|^{q-2}u +|u|^{4}u$, where $\lambda> 0$, $q\in(2_{\alpha}^{*},6)$, $2_{\alpha}^{*}=2+{4\alpha}/({4-\alpha})$ is the embedding bottom index, and $6$ is the embedding top index and Sobolev critical exponent. We point out that the nonlinearity $f$ is the almost ``optimal'' choice. First, for $\alpha\in({4}/{3},2)$, applying the generalized version of Lions-type theorem and the Nehari manifold, we show the existence of nonnegative Nehari-type ground sate solution for above equation. Second, for $\alpha\in(0,1)$, using the generalized version of Lions-type theorem and the Poho\v{z}aev manifold, we establish the existence of nonnegative Poho\v{z}aev-type ground state solution for above equation. Based on our new generalized version of Lions-type theorem, our works extend the results in Li-Su [Z. Angew. Math. Phys. {\bf 66} (2015)].References
A. Arosio and S. Panizzi, On the well-posedness of the Kirchhoff string, Trans. Amer. Math. Soc. 348 (1996), no. 1, 305–330.
M. Badiale and S. Rolando, A note on nonlinear elliptic problems with singular potentials, Atti Accad. Naz. Lincei Rend. Lincei Mat. Appl. 17 (2006), no. 1, 1–13.
M. Badiale, M. Guida and S. Rolando, Compactness and existence results in weighted Sobolev spaces of radial functions, Part II:existence, NoDEA Nonlinear Differential Equations Appl. 23 (2016), no. 6, Art. 67, 1–34.
M. Badiale, M. Guida and S. Rolando, Compactness and existence results for the p-Laplace equation, J. Math. Anal. Appl. 451 (2017), no. 1, 345–370.
T. Bartsch and Z. Wang, Existence and multiplicity results for some superlinear elliptic problems on RN , Comm. Partial Differential Equations 20 (1995), no. 9–10, 1725–1741.
S. Bernstein, Sur une classe d’équations fonctionnelles aux dérivées partielles, Bull. Acad. Sci. URSS. Sér. Math. [Izvestia Akad. Nauk SSSR] 4 (1940), 17–26.
H. Brézis and E. Lieb, A relation between pointwise convergence of functions and convergence of functionals, Proc. Amer. Math. Soc. 88 (1983), no. 3, 486–490.
M. Caponi and P. Pucci, Existence theorems for entire solutions of stationary Kirchhoff fractional p-Laplacian equations, Ann. Mat. Pura Appl. (4) 195 (2016), no. 6, 2099–2129.
P. Carrião, R. Demarque and O. Miyagaki, Nonlinear biharmonic problems with singular potentials, Commun. Pure Appl. Anal. 13 (2014), no. 6, 2141–2154.
F. Catrina, Nonexistence of positive radial solutions for a problem with singular potential, Adv. Nonlinear Anal. 3 (2014), no. 1, 1–13.
P. D’Ancona and S. Spagnolo, Global solvability for the degenerate Kirchhoff equation with real analytic data, Invent. Math. 108 (1992), no. 2, 247–262.
R. Filippucci, P. Pucci and F. Robert, On a p-Laplace equation with multiple critical nonlinearities, J. Math. Pures Appl. (9) 91 (2009), no. 2, 156–177.
Z. Guo, Ground states for Kirchhoff equations without compact condition, J. Differential Equations 259 (2015), no. 7, 2884–2902.
X. He and W. Zou, Existence and concentration behavior of positive solutions for a Kirchhoff equation in R3 , J. Differential Equations 252 (2012), no. 2, 1813–1834.
E. Hebey, Multiplicity of solutions for critical Kirchhoff type equations, Comm. Partial Differential Equations 41 (2016), no. 6, 913–924.
G. Kirchhoff, Mechanik, Teubner, Leipzig, 1883.
A. Li and J. Su, Existence and multiplicity of solutions for Kirchhoff-type equation with radial potentials in R3 , Z. Angew. Math. Phys. 66 (2015), no. 6, 3147–3158.
J. Lions, On Some Questions in Boundary Value Problems of Mathematical Physics, North-Holland Math. Stud., vol. 30, North-Holland, Amsterdam, New York, 1978.
D. Lü, A note on Kirchhoff-type equations with Hartree-type nonlinearities, Nonlinear Anal. 99 (2014), 35–48.
P. Piersanti and P. Pucci, Entire solutions for critical p-fractional Hardy Schrödinger Kirchhoff equations, Publ. Mat. 62 (2018), no. 1, 3–36.
S. Pohožaev, A certain class of quasilinear hyperbolic equations, Mat. Sb. (N.S.) 96 (138) (1975), 152–166, 168.
P. Rabinowitz, On a class of nonlinear Schrödinger equations, Z. Angew. Math. Phys., 43 (1992), no. 2, 270–291.
D. Repovš and K. Saoudi, ]it The Nehari manifold approach for singular equations involving the p(x)-Laplace operator, Complex Var. Elliptic Equ. (to appear).
J. Seok, Nonlinear Choquard equations: doubly critical case, Appl. Math. Lett. 76 (2018), 148–156.
J. Sousa, C. Ledesma, M. Pigossi and J. Zuo, Nehari manifold for weighted singular fractional p-Laplace equations, Bull. Braz. Math. Soc. (N.S.) (to appear).
W. Strauss, Existence of solitary waves in higher dimensions, Comm. Math. Phys. 55 (1977), no. 2, 149–162.
Y. Su, Positive solution to Schrödinger equation with singular potential and double critical exponents, Atti Accad. Naz. Lincei Rend. Lincei Mat. Appl. 31 (2020), no. 4, 667–698.
J. Su, Z. Wang and M. Willem, Nonlinear Schrödinger equations with unbounded and decaying radial potentials, Commun. Contemp. Math. 9 (2007), no. 4, 571–583.
M. Willem, Minimax Theorems, Progress in Nonlinear Differential Equations and their Applications, vol. 24, Birkhäuser, Boston, 1996.
Q. Xie and S. Ma, Existence and concentration of positive solutions for Kirchhoff-type problems with a steep well potential, J. Math. Anal. Appl. 431 (2015), no. 2, 1210–1223.
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Yu Su, Senli Liu
This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.
Stats
Number of views and downloads: 0
Number of citations: 0