Przejdź do sekcji głównej Przejdź do głównego menu Przejdź do stopki
  • Zaloguj
  • Język
    • English
    • Język Polski
  • Menu
  • Strona domowa
  • Aktualny numer
  • Online First
  • Archiwum
  • O czasopiśmie
    • O czasopiśmie
    • Przesyłanie tekstów
    • Zespół redakcyjny
    • Polityka prywatności
    • Kontakt
  • Zaloguj
  • Język:
  • English
  • Język Polski

Topological Methods in Nonlinear Analysis

Multiplicity of positive solutions for a Kirchhoff type problem without asymptotic conditions
  • Strona domowa
  • /
  • Multiplicity of positive solutions for a Kirchhoff type problem without asymptotic conditions
  1. Strona domowa /
  2. Archiwum /
  3. Vol 61, No 2 (June 2023) /
  4. Articles

Multiplicity of positive solutions for a Kirchhoff type problem without asymptotic conditions

Autor

  • Xiaotao Qian

DOI:

https://doi.org/10.12775/TMNA.2022.031

Słowa kluczowe

Kirchhoff type problem, multiple positive solutions, variational methods

Abstrakt

In this paper, we are concerned with the multiplicity of positive solutions for the following Kirchhoff type problem \[ \begin{cases} -\bigg({\varepsilon}^2a+{\varepsilon}b\int_{\mathbb{R}^3} |\n u|^2dx\bigg)\Delta u+u=Q(x)|u|^{p-2}u, & x\in\mathbb{R}^3,\\ u\in H^1\big(\mathbb{R}^3\big), \quad u> 0, & x\in\mathbb{R}^3, \end{cases} \] where $\varepsilon> 0$ is a small parameter, $a,b> 0$ are constants, $4< p< 6$, $Q$ is a nonnegative continuous potential and does not satisfy any asymptotic condition. Combining Nehari manifold and concentration compactness principle, we study how the shape of the graph of $Q(x)$ affects the number of positive solutions.

Bibliografia

A. Ambrosetti, M. Badiale and S. Cingolani, Semiclassical states of nonlinear Schrödinger equations with potentials, Arch. Ration. Mech. Anal. 140 (1997), 285–300.

A. Ambrosetti, A. Malchiodi and S. Secchi, Multiplicity results for some nonlinear Schrödinger equations with potentials, Arch. Ration. Mech. Anal. 159 (2001), 253–271.

A. Arosio and S. Panizzi, On the well-posedness of the Kirchhoff string, Trans. Amer. Math. Soc. 348 (1996), 305–330.

H. Brézis and E.H. Lieb, A relation between pointwise convergence of functions and convergence of functionals, Proc. Amer. Math. Soc. 88 (1983), 486–490.

D. Cao and E.S. Noussair, Multiple positive and nodal solutions for semilinear elliptic problems with critical exponents, Indiana Univ. Math. J. 44 (1995), 1249–1271.

D. Cao and E.S. Noussair, Multiplicity of positive and nodal solutions for nonlinear elliptic problems in RN , Ann. Inst. H. Poincaré Anal. Non Linéaire 13 (1996), 567–588.

D. Cassani, Z. Liu, C. Tarsi and J. Zhang, Multiplicity of sign-changing solutions for Kirchhoff-type equations, Nonlinear Anal. 186 (2019), 145–161.

J. Chen, Multiple positive solutions to a class of Kirchhoff equation on R3 with indefinite nonlinearity, Nonlinear Anal. 96 (2014), 134–145.

S. Cingolani and N. Lazzo, Multiple semiclassical standing waves for a class of nonlinear Schrödinger equations, Topol. Methods Nonlinear Anal. 10 (1997), 1–13.

M. Del Pino and P.L. Felmer, Semi-classical states for nonlinear Schrödinger equations: a variational reduction method, Math. Ann. 324 (2002), 1–32.

H. Fan, Positive solutions for a Kirchhoff-type problem involving multiple competitive potentials and critical Sobolev exponent, Nonlinear Anal. 198 (2020), Article 111869.

A. Floer and A. Weinstein, Nospreading wave packets for the cubic Schrödinger equation with a bounded potential, J. Funct. Anal. 69 (1986), 397–408.

X. He and W. Zou, Multiplicity of solutions for a class of Kirchhoff type problems, Acta Math. Appl. Sin. 26 (2010), 387–394.

X. He and W. Zou, Existence and concentration behavior of positive solutions for a Kirchhoff equation in R3 , J. Differential Equations 252 (2012), 1813–1834.

G. Kirchhoff, Mechanik, Teubner, Leipzig, 1883.

C. Lei, G. Liu and L. Guo, Multiple positive solutions for a Kirchhoff problem with a critical nonlinearity, Nonlinear Anal. Real World Appl. 31 (2016), 343–355.

J.L. Lions, On some questions in boundary value problems of mathematical physics, North-Holland Math. Stud. 30 (1978), 284–346.

J.L. Lions, The concentration-compactness principle in the calculus of variations. The locally compact case, Part II, Ann. Inst. H. Poincaré Anal. Nonlinéaire 1 (1984), 223–283.

G. Li and H. Ye, Existence of positive solutions for nonlinear Kirchhoff type problems in R3 with critical Sobolev exponent and sign-changing nonlinearities, Math. Method. Appl. Sci. 7 (2013), 97–114.

Y. Li, F. Li and J. Shi, Existence of a positive solution to Kirchhoff type problems without compactness conditions, J. Differential Equations 253 (2012), 2285–2294.

Y. Liu and S. Guo, Existence and concentration of positive ground states for a Kirchhoff equation involving critical Sobolev exponent, Z. Angew. Math. Phys. 66 (2015), 747–769.

T.F. Ma and J.E. Munoz Rivera, Positive solutions for a nonlinear nonlocal elliptic transmission problem, Appl. Math. Lett. 16 (2003), 243–248.

J.Y. Oh, On positive multi-lump bound states of nonlinear Schrödinger equations under multiple well potential, Comm. Math. Phys. 131 (1990), 223–253.

K. Perera and Z. Zhang, Nontrivial solutions of Kirchhoff-type problems via the Yang index, J. Differential Equations 221 (2006), 246–255.

P.H. Rabinowitz, On a class of nonlinear Schrödinger equations, Z. Angew. Math. Phys. 43 (1992), 270–291.

X. Qian and J. Chen, Multiple positive and sign-changing solutions of an elliptic equation with fast increasing weight and critical growth, J. Math. Anal. Appl. 465 (2018), 1186–1208.

X. Qian and W. Chao, Positive solutions for a Kirchhoff type problem with fast increasing weight and critical nonlinearity, Electron. J. Qual. Theory Differ. Equ. 27 (2019), 1–17.

Y. Sun and X. Liu, Existence of positive solutions for Kirchhoff type problems with critical exponent, J. Partial Differ. Equ. 25 (2012), 187–198.

D. Sun and Z. Zhang, Uniqueness, existence and concentration of positive ground state solutions for Kirchhoff type problems in R3 , J. Math. Anal. Appl. 461 (2018), 128–149.

J. Wang, L. Tian, J. Xu, and F. Zhang, Multiplicity and concentration of positive solutions for a Kirchhoff type problem with critical growth, J. Differential Equations 253 (2012), 2314–2351.

J. Wang and L. Xiao, Existence and concentration of solutions for a Kirchhoff type problem with potential, Discrete Contin. Dyn. Syst. 36 (2016), 7137–7168.

X. Wang, On concentration of positive bound states of nonlinear Schrödinger equations, Comm. Math. Phys. 53 (1993), 224–229.

Pobrania

  • PREVIEW (English)
  • FULL TEXT (English)

Opublikowane

2023-06-23

Jak cytować

1.
QIAN, Xiaotao. Multiplicity of positive solutions for a Kirchhoff type problem without asymptotic conditions. Topological Methods in Nonlinear Analysis [online]. 23 czerwiec 2023, T. 61, nr 2, s. 681–700. [udostępniono 28.6.2025]. DOI 10.12775/TMNA.2022.031.
  • PN-ISO 690 (Polski)
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Pobierz cytowania
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Numer

Vol 61, No 2 (June 2023)

Dział

Articles

Licencja

Prawa autorskie (c) 2023 Xiaotao Qian

Creative Commons License

Utwór dostępny jest na licencji Creative Commons Uznanie autorstwa – Bez utworów zależnych 4.0 Międzynarodowe.

Statystyki

Liczba wyświetleń i pobrań: 0
Liczba cytowań: 0

Wyszukiwanie

Wyszukiwanie

Przeglądaj

  • Indeks autorów
  • Lista archiwalnych numerów

Użytkownik

Użytkownik

Aktualny numer

  • Logo Atom
  • Logo RSS2
  • Logo RSS1

Newsletter

Zapisz się Wypisz się
W górę

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partnerzy platformy czasopism

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Uniwersytet Mikołaja Kopernika w Toruniu Deklaracja dostępności Sklep wydawnictwa