Skip to main content Skip to main navigation menu Skip to site footer
  • Login
  • Language
    • English
    • Język Polski
  • Menu
  • Home
  • Current
  • Online First
  • Archives
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  • Login
  • Language:
  • English
  • Język Polski

Topological Methods in Nonlinear Analysis

Elliptic problems on weighted locally finite graphs
  • Home
  • /
  • Elliptic problems on weighted locally finite graphs
  1. Home /
  2. Archives /
  3. Vol 61, No 1 (March 2023) /
  4. Articles

Elliptic problems on weighted locally finite graphs

Authors

  • Maurizio Imbesi https://orcid.org/0000-0002-1128-5203
  • Giovanni Molica Bisci https://orcid.org/0000-0003-4802-1727
  • Dušan D. Repovš https://orcid.org/0000-0002-6643-1271

DOI:

https://doi.org/10.12775/TMNA.2022.059

Keywords

Semi-linear equations on graphs, variational methods, critical point theory

Abstract

Let $\mathcal{G}:= (V,E)$ be a weighted locally finite graph whose finite measure $\mu$ has a positive lower bound. Motivated by a wide interest in the current literature, in this paper we study the existence of classical solutions for a class of elliptic equations involving the $\mu$-Laplacian operator on the graph $\mathcal{G}$, whose analytic expression is given by \begin{equation*} \Delta_{\mu} u(x) := \frac{1}{\mu (x)} \sum_{y\sim x} w(x,y) (u(y)-u(x))\quad (\text{for all } x\in V), \end{equation*} where $w \colon V\times V \rightarrow [0,+\infty)$ is a weight symmetric function and the sum on the right-hand side of the above expression is taken on the neighbours vertices $x,y\in V$, that is $x\sim y$ whenever $w(x,y) > 0$. More precisely, by exploiting direct variational methods, we study problems whose simple prototype has the following form \begin{equation*}\label{Np000} \begin{cases} -\Delta_{\mu} u(x)=\lambda f(x,u(x))&\text{for } x \in \mathop D\limits^ \circ,\\ u|_{\partial D}=0, \end{cases} \end{equation*} where $D$ is a bounded domain of $V$ such that $\mathop D\limits^ \circ\neq \emptyset$ and $\partial D\neq \emptyset$, the nonlinear term $f \colon D \times \RR \rightarrow \RR$ satisfy suitable structure conditions and $\lambda$ is a positive real parameter. By applying a critical point result coming out from a classical Pucci-Serrin theorem in addition to a local minimum result for differentiable functionals due to Ricceri, we are able to prove the existence of at least two solutions for the treated problems. We emphasize the crucial role played by the famous Ambrosetti-Rabinowitz growth condition along the proof of the main theorem and its consequences. Our results improve the general results obtained by A.\ Grigor'yan, Y.\ Lin, and Y.\ Yang in \cite{GLY2}.

References

A. Ambrosetti and P.H. Rabinowitz, Dual variational methods in critical point theory and applications, J. Funct. Anal. 14 (1973), 349–381.

H. Brézis, Analyse Fonctionelle. Théorie et Applications, Masson, Paris, 1983.

M. Barlow, T. Coulhon and A. Grigor’yan, Manifolds and graphs with slow heat kernel decay, Invent. Math. 144 (2001), no. 3, 609–649.

F. Chung, A. Grigor’yan and S.-T. Yau, Eigenvalues and diameters for manifolds and graphs, Tsing Hua Lectures on Geometry and Analysis (Hsinchu, 1990), Int. Press, Cambridge, MA, 1997, pp. 79–105.

F. Chung, A. Grigor’yan and S.-T. Yau, Higher eigenvalues and isoperimetric inequalities on Riemannian manifolds and graphs, Comm. Anal. Geom. 8 (2000), no. 5, 969–1026.

T. Coulhon and A. Grigor’yan, Random walks on graphs with regular volume growth, Geom. Funct. Anal. 8 (1998), no. 4, 656–701.

K.J. Falconer and J. Hu, Nonlinear elliptic equations on the Sierpiński gasket, J. Math. Anal. Appl. 240 (1999), 552–573.

H. Ge, A p-th Yamabe equation on graph, Proc. Amer. Math. Soc. 146 (2018), no. 5, 2219–2224.

H. Ge, The p-th Kazdan–Warner equation on graphs, Commun. Contemp. Math. 22 (2020), no. 6, 1950052, 17.

H. Ge, B. Hua and W. Jiang, A note on Liouville type equations on graphs, Proc. Amer. Math. Soc. 146 (2018), no. 11, 4837–4842.

H. Ge and W. Jiang, Kazdan–Warner equation on infinite graphs, J. Korean Math. Soc. 55 (2018), no. 5, 1091–1101.

H. Ge and W. Jiang, Yamabe equations on infinite graphs, J. Math. Anal. Appl. 460 (2018), no. 2, 885–890.

H. Ge and W. Jiang, The 1-Yamabe equation on graphs, Commun. Contemp. Math. 21 (2019), no. 8, 1850040, 10.

A. Grigor’yan, Heat kernels on manifolds, graphs and fractals, European Congress of Mathematics, vol. I (Barcelona, 2000), Progr. Math., vol. 201, Birkhäuser, Basel, 2001, pp. 393–406.

A. Grigor’yan, Introduction to analysis on graphs, University Lecture Series, vol. 71, American Mathematical Society, Providence, RI, 2018.

A. Grigor’yan, Y. Lin and Y. Yang, Kazdan–Warner equation on graph, Calc. Var. Partial Differential Equations 55 (2016), no. 4, Art. 92, 13.

A. Grigor’yan, Y. Lin, and Y. Yang, Yamabe type equations on graphs, J. Differential Equations 261 (2016), no. 9, 4924–4943.

A. Grigor’yan, Y. Lin and Y. Yang, Existence of positive solutions to some nonlinear equations on locally finite graphs, Sci. China Math. 60 (2017), no. 7, 1311–1324.

X. Han, M. Shao and L. Zhao, Existence and convergence of solutions for nonlinear biharmonic equations on graphs, J. Differential Equations 268 (2020), no. 7, 3936–3961.

S. Haeseler and M. Keller, Generalized solutions and spectrum for Dirichlet forms on graphs. In [21], 181–200.

A. Kristály, V. Rădulescu and Cs. Varga, Variational Principles in Mathematical Physics, Geometry, and Economics: Qualitative Analysis of Nonlinear Equations and Unilateral Problems, Encyclopedia of Mathematics and its Applications, No. 136, Cambridge University Press, Cambridge, 2010.

D. Lenz, F. Sobieczky and W. Woess (eds.), Random walks, boundaries and spectra, Proceedings of the Workshop on Boundaries, Graz, Austria, June 29–July 3, 2009 and the Alp-Workshop, Sankt Kathrein, Austria, July 4–5, 2009, Progress in Probability, vol. 64, Birkhäuser, Basel, 2011.

Y. Lin and Y. Wu, The existence and nonexistence of global solutions for a semilinear heat equation on graphs, Calc. Var. Partial Differential Equations 56 (2017), no. 4, paper no. 102, 22.

S. Liu and Y. Yang, Multiple solutions of Kazdan–Warner equation on graphs in the negative case, Calc. Var. Partial Differential Equations 59 (2020), no. 5, paper no. 164, 15.

G. Molica Bisci and D. Repovš, Yamabe-type equations on Carnot groups, Potential Anal. 46 (2017), no. 2, 369–383.

G. Molica Bisci, D. Repovš and R. Servadei, Nonlinear problems on the Sierpinski gasket, J. Math. Anal. Appl. 452 (2017), 883–895.

A. Pinamonti and G. Stefani, Existence and uniqueness theorems for some semi-linear equations on locally finite graphs, Proc. Amer. Math. Soc. 150 (2022), 4757–4770.

P. Pucci and J. Serrin, A mountain pass theorem, J. Differential Equations 60 (1985), 142–149.

P.H. Rabinowitz, Minimax methods in critical point theory with applications to differential equations, CBMS Reg. Conf. Ser. Math., vol. 65, American Mathematical Society, Providence, RI, 1986.

B. Ricceri, On a classical existence theorem for nonlinear elliptic equations, Esperimental, Constructive and Nonlinar Analysis (M. Théra, ed.), CMS Conf. Proc., vol. 27, Canad. Math. Soc., 2000, pp. 275–278.

B. Ricceri, A general variational principle and some of its applications, J. Comput. Appl. Math., special issue on Fixed Point Theory with Aplications in Nonlinear Analysis 113 (2000), 401–410.

B. Ricceri, Nonlinear eigenvalue problems, Handbook of Nonconvex Analysis and Applications (D.Y. Gao and D. Motreanu, eds.), International Press, 2010, pp. 543–595.

B. Ricceri, A new existence and localization theorem for Dirichlet problem, Dynam. Systems Appl. 22 (2013), 317–324.

M. Struwe, Variational Methods, Applications to Nonlinear Partial Differential Equations and Hamiltonian Systems, Ergebnisse der Mathematik und ihrer Grenzgebiete, vol. 3, Springer–Verlag, Berlin, Heidelberg, 1990.

D. Zhang, Semi-linear elliptic equations on graphs, J. Partial Differerential Equations 30 (2017), no. 3, 221–231.

X. Zhang and Y. Chang, p-th Kazdan–Warner equation on graph in the negative case, J. Math. Anal. Appl. 466 (2018), no. 1, 400–407.

X. Zhang and A. Lin, Positive solutions of p-th Yamabe type equations on graphs, Front. Math. China 13 (2018), no. 6, 1501–1514.

X. Zhang and A. Lin, Positive solutions of p-th Yamabe type equations on infinite graphs, Proc. Amer. Math. Soc. 147 (2019), no. 4, 1421–1427.

Downloads

  • PREVIEW
  • FULL TEXT

Published

2023-03-04

How to Cite

1.
IMBESI, Maurizio, BISCI, Giovanni Molica and REPOVŠ, Dušan D. Elliptic problems on weighted locally finite graphs. Topological Methods in Nonlinear Analysis. Online. 4 March 2023. Vol. 61, no. 1, pp. 501 - 526. [Accessed 17 May 2025]. DOI 10.12775/TMNA.2022.059.
  • ISO 690
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

Vol 61, No 1 (March 2023)

Section

Articles

License

Copyright (c) 2023 Maurizio Imbesi, Giovanni Molica Bisci, Dušan D. Repovš

Creative Commons License

This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.

Stats

Number of views and downloads: 0
Number of citations: 0

Search

Search

Browse

  • Browse Author Index
  • Issue archive

User

User

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo

Newsletter

Subscribe Unsubscribe
Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop