Topology of the Grünbaum-Hadwiger-Ramos problem for mass assignments
DOI:
https://doi.org/10.12775/TMNA.2022.041Keywords
Fadell-Husseini ideal valued index, mass partitions, existence of equivariant mapsAbstract
In this paper, motivated by recent work of Schnider and Axelrod-Freed and Soberón, we study an extension of the classical Grünbaum-Hadwiger-Ramos mass partition problem to mass assignments. Using the Fadell-Husseini index theory we prove that for a given family of $j$ mass assignments $\mu_1,\dots,\mu_j$ on the Grassmann manifold $G_{\ell}\big(\mathbb{R}^d\big)$ and a given integer $k\geq 1$ there exist a linear subspace $L\in G_{\ell}\big(\mathbb{R}^d\big)$ and $k$ affine hyperplanes in $L$ that equipart the masses $\mu_1^L,\dots,\mu_j^L$ assigned to the subspace $L$, provided that $d\geq j + (2^{k-1}-1)2^{\lfloor\log_2j\rfloor}$.References
A. Adem and J.R. Milgram, Cohomology of finite groups, second ed., Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 309, Springer–Verlag, Berlin, 2004.
D. Avis, Nonpartitionable point sets, Inform. Process. Lett. 19 (1984), no. 3, 125–129.
I. Axelrod-Freed and P. Soberón, Bisections of mass assignments using flags of affine spaces, Discrete Comput. Geom. (2022), 19 pp. (online first: 30 December 2022).
W.A. Beyer and A.Zardecki, The early history of the ham sandwich theorem, Amer. Math. Monthly 111 (2004), no. 1, 58–61.
P.V.M. Blagojević, F. Frick, A. Haase and G.M. Ziegler, Hyperplane mass partitions via relative equivariant obstruction theory, Doc. Math. 21 (2016), 735–771.
P.V.M. Blagojević, F. Frick, A. Haase and G.M. Ziegler, Topology of the Grünbaum–Hadwiger–Ramos hyperplane mass partition problem, Trans. Amer. Math. Soc. 370 (2018), no. 10, 6795–6824.
P.V.M. Blagojević, B. Matschke and G.M. Ziegler, Optimal bounds for a colorful Tverberg–Vrećica type problem, Adv. Math. 226 (2011), no. 6, 5198–5215.
P.V.M. Blagojević and G.M. Ziegler, The ideal-valued index for a dihedral group action, and mass partition by two hyperplanes, Topology Appl. 158 (2011), no. 12, 1326–1351.
A. Borel, La cohomologie mod 2 de certains espaces homogènes, Comment. Math. Helv. 27 (1953), 165–197.
G.E. Bredon, Topology and Geometry, Graduate Texts in Mathematics, vol. 139, Springer–Verlag, New York, 1997, corrected third printing of the 1993 original.
M.C. Crabb and J. Jaworowski, Aspects of the Borsuk–Ulam theorem, J. Fixed Point Theory Appl. 13 (2013), no. 2, 459–488.
A. Dold, Parametrized Borsuk–Ulam theorems, Commentarii Mathematici Helvetici 63 (1988), no. 1, 275–285.
E. Fadell and S. Husseini, An ideal-valued cohomological index theory with applications to Borsuk–Ulam and Bourgin–Yang theorems, Ergodic Theory Dynam. Systems 8∗ (1988), Charles Conley Memorial Issue, 73–85.
B. Grünbaum, Partitions of mass-distributions and of convex bodies by hyperplanes, Pacific J. Math. 10 (1960), 1257–1261.
H. Hadwiger, Simultane Vierteilung zweier Körper, Arch. Math. (Basel) 17 (1966), 274–278.
H.L. Hiller, On the cohomology of real Grassmanians, Trans. Amer. Math. Soc. 257 (1980), no. 2, 521–533.
P. Mani-Levitska, S. Vrećica and R. Živaljević, Topology and combinatorics of partitions of masses by hyperplanes, Adv. Math. 207 (2006), no. 1, 266–296.
D.R. Mauldin (ed.), The Scottish Book, Birkhäuser, Boston, Mass., 1981, Mathematics from the Scottish Café, Including selected papers presented at the Scottish Book Conference held at North Texas State University, Denton, Tex., May 1979.
E.A. Ramos, Equipartition of mass distributions by hyperplanes, Discrete Comput. Geom. 15 (1996), no. 2, 147–167.
W. Rudin, Real and Complex Analysis, third ed., McGraw–Hill Book Co., New York, 1987.
P. Schnider, Ham–Sandwich cuts and center transversals in subspaces, 35th International Symposium on Computational Geometry, LIPIcs. Leibniz Int. Proc. Inform., vol. 129, Schloss Dagstuhl. Leibniz-Zent. Inform., Wadern, 2019, Art. No. 56, 15 pp.
F. Topsøe, Topology and Measure, Lecture Notes in Mathematics, vol. 133, Springer–Verlag, Berlin, New York, 1970.
C. Wilkerson, A primer on the Dickson invariants, Proceedings of the Northwestern Homotopy Theory Conference (Evanston, Ill., 1982), Contemp. Math., vol. 19, Amer. Math. Soc., Providence, RI, 1983, pp. 421–434.
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Pavle V. M. Blagojević, Jaime Calles Loperena, Michael C. Crabb, Aleksandra S. Dimitrijević Blagojević

This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.
Stats
Number of views and downloads: 0
Number of citations: 0