Skip to main content Skip to main navigation menu Skip to site footer
  • Login
  • Language
    • English
    • Język Polski
  • Menu
  • Home
  • Current
  • Online First
  • Archives
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  • Login
  • Language:
  • English
  • Język Polski

Topological Methods in Nonlinear Analysis

Topology of the Grünbaum-Hadwiger-Ramos problem for mass assignments
  • Home
  • /
  • Topology of the Grünbaum-Hadwiger-Ramos problem for mass assignments
  1. Home /
  2. Archives /
  3. Vol 61, No 1 (March 2023) /
  4. Articles

Topology of the Grünbaum-Hadwiger-Ramos problem for mass assignments

Authors

  • Pavle V. M. Blagojević
  • Jaime Calles Loperena
  • Michael C. Crabb
  • Aleksandra S. Dimitrijević Blagojević

DOI:

https://doi.org/10.12775/TMNA.2022.041

Keywords

Fadell-Husseini ideal valued index, mass partitions, existence of equivariant maps

Abstract

In this paper, motivated by recent work of Schnider and Axelrod-Freed and Soberón, we study an extension of the classical Grünbaum-Hadwiger-Ramos mass partition problem to mass assignments. Using the Fadell-Husseini index theory we prove that for a given family of $j$ mass assignments $\mu_1,\dots,\mu_j$ on the Grassmann manifold $G_{\ell}\big(\mathbb{R}^d\big)$ and a given integer $k\geq 1$ there exist a linear subspace $L\in G_{\ell}\big(\mathbb{R}^d\big)$ and $k$ affine hyperplanes in $L$ that equipart the masses $\mu_1^L,\dots,\mu_j^L$ assigned to the subspace $L$, provided that $d\geq j + (2^{k-1}-1)2^{\lfloor\log_2j\rfloor}$.

References

A. Adem and J.R. Milgram, Cohomology of finite groups, second ed., Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 309, Springer–Verlag, Berlin, 2004.

D. Avis, Nonpartitionable point sets, Inform. Process. Lett. 19 (1984), no. 3, 125–129.

I. Axelrod-Freed and P. Soberón, Bisections of mass assignments using flags of affine spaces, Discrete Comput. Geom. (2022), 19 pp. (online first: 30 December 2022).

W.A. Beyer and A.Zardecki, The early history of the ham sandwich theorem, Amer. Math. Monthly 111 (2004), no. 1, 58–61.

P.V.M. Blagojević, F. Frick, A. Haase and G.M. Ziegler, Hyperplane mass partitions via relative equivariant obstruction theory, Doc. Math. 21 (2016), 735–771.

P.V.M. Blagojević, F. Frick, A. Haase and G.M. Ziegler, Topology of the Grünbaum–Hadwiger–Ramos hyperplane mass partition problem, Trans. Amer. Math. Soc. 370 (2018), no. 10, 6795–6824.

P.V.M. Blagojević, B. Matschke and G.M. Ziegler, Optimal bounds for a colorful Tverberg–Vrećica type problem, Adv. Math. 226 (2011), no. 6, 5198–5215.

P.V.M. Blagojević and G.M. Ziegler, The ideal-valued index for a dihedral group action, and mass partition by two hyperplanes, Topology Appl. 158 (2011), no. 12, 1326–1351.

A. Borel, La cohomologie mod 2 de certains espaces homogènes, Comment. Math. Helv. 27 (1953), 165–197.

G.E. Bredon, Topology and Geometry, Graduate Texts in Mathematics, vol. 139, Springer–Verlag, New York, 1997, corrected third printing of the 1993 original.

M.C. Crabb and J. Jaworowski, Aspects of the Borsuk–Ulam theorem, J. Fixed Point Theory Appl. 13 (2013), no. 2, 459–488.

A. Dold, Parametrized Borsuk–Ulam theorems, Commentarii Mathematici Helvetici 63 (1988), no. 1, 275–285.

E. Fadell and S. Husseini, An ideal-valued cohomological index theory with applications to Borsuk–Ulam and Bourgin–Yang theorems, Ergodic Theory Dynam. Systems 8∗ (1988), Charles Conley Memorial Issue, 73–85.

B. Grünbaum, Partitions of mass-distributions and of convex bodies by hyperplanes, Pacific J. Math. 10 (1960), 1257–1261.

H. Hadwiger, Simultane Vierteilung zweier Körper, Arch. Math. (Basel) 17 (1966), 274–278.

H.L. Hiller, On the cohomology of real Grassmanians, Trans. Amer. Math. Soc. 257 (1980), no. 2, 521–533.

P. Mani-Levitska, S. Vrećica and R. Živaljević, Topology and combinatorics of partitions of masses by hyperplanes, Adv. Math. 207 (2006), no. 1, 266–296.

D.R. Mauldin (ed.), The Scottish Book, Birkhäuser, Boston, Mass., 1981, Mathematics from the Scottish Café, Including selected papers presented at the Scottish Book Conference held at North Texas State University, Denton, Tex., May 1979.

E.A. Ramos, Equipartition of mass distributions by hyperplanes, Discrete Comput. Geom. 15 (1996), no. 2, 147–167.

W. Rudin, Real and Complex Analysis, third ed., McGraw–Hill Book Co., New York, 1987.

P. Schnider, Ham–Sandwich cuts and center transversals in subspaces, 35th International Symposium on Computational Geometry, LIPIcs. Leibniz Int. Proc. Inform., vol. 129, Schloss Dagstuhl. Leibniz-Zent. Inform., Wadern, 2019, Art. No. 56, 15 pp.

F. Topsøe, Topology and Measure, Lecture Notes in Mathematics, vol. 133, Springer–Verlag, Berlin, New York, 1970.

C. Wilkerson, A primer on the Dickson invariants, Proceedings of the Northwestern Homotopy Theory Conference (Evanston, Ill., 1982), Contemp. Math., vol. 19, Amer. Math. Soc., Providence, RI, 1983, pp. 421–434.

Downloads

  • PREVIEW
  • FULL TEXT

Published

2023-03-04

How to Cite

1.
BLAGOJEVIĆ, Pavle V. M., LOPERENA, Jaime Calles, CRABB, Michael C. and DIMITRIJEVIĆ BLAGOJEVIĆ, Aleksandra S. Topology of the Grünbaum-Hadwiger-Ramos problem for mass assignments. Topological Methods in Nonlinear Analysis. Online. 4 March 2023. Vol. 61, no. 1, pp. 107 - 133. [Accessed 17 May 2025]. DOI 10.12775/TMNA.2022.041.
  • ISO 690
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

Vol 61, No 1 (March 2023)

Section

Articles

License

Copyright (c) 2023 Pavle V. M. Blagojević, Jaime Calles Loperena, Michael C. Crabb, Aleksandra S. Dimitrijević Blagojević

Creative Commons License

This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.

Stats

Number of views and downloads: 0
Number of citations: 0

Search

Search

Browse

  • Browse Author Index
  • Issue archive

User

User

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo

Newsletter

Subscribe Unsubscribe
Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop