Skip to main content Skip to main navigation menu Skip to site footer
  • Login
  • Language
    • English
    • Język Polski
  • Menu
  • Home
  • Current
  • Online First
  • Archives
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  • Login
  • Language:
  • English
  • Język Polski

Topological Methods in Nonlinear Analysis

Normalized solutions to a non-variational Schrödinger system
  • Home
  • /
  • Normalized solutions to a non-variational Schrödinger system
  1. Home /
  2. Archives /
  3. Vol 61, No 1 (March 2023) /
  4. Articles

Normalized solutions to a non-variational Schrödinger system

Authors

  • Mónica Clapp https://orcid.org/0000-0002-3279-6491
  • Andrzej Szulkin https://orcid.org/0000-0001-8797-4657

DOI:

https://doi.org/10.12775/TMNA.2022.040

Keywords

Morse index, Brouwer degree, weakly coupled elliptic system, positive solution, uniform bound

Abstract

We establish the existence of positive normalized (in the $L^2$ sense) solutions to non-variational weakly coupled elliptic systems of $\ell$ equations. We consider couplings of both cooperative and competitive type. We show the problem can be formulated as an operator equation on the product of $\ell$ $L^2$-spheres and apply a degree-theoretical argument on this product to obtain existence.

References

A. Ambrosetti and A. Malchiodi, Nonlinear Analysis and Semilinear Elliptic Problems, Cambridge University Press, Cambridge, 2007.

T. Bartsch and L. Jeanjean, Normalized solutions for nonlinear Schrödinger systems, Proc. Roy. Soc. Edinburgh Sect. A 148 (2018), no. 2, 225–242.

T. Bartsch, L. Jeanjean and N. Soave, Normalized solutions for a system of coupled cubic Schrödinger equations on R3 , J. Math. Pures Appl. (9) 106 (2016), no. 4, 583–614.

T. Bartsch and N. Soave, A natural constraint approach to normalized solutions of nonlinear Schrödinger equations and systems, J. Func. Anal. 272 (2017), 4998–5037.

T. Bartsch, X. Zhong and W. Zou, Normalized solutions for a coupled Schrödinger system, Math. Ann. 380 (2021), 1713–1740.

B. Bieganowski and J. Mederski, Normalized ground states of the nonlinear Schrödinger equation with at least mass critical growth, J. Func. Anal. 280 (2021), no. 11, paper no. 108989, 26 pp.

K.C. Chang, Infinite Dimensional Morse Theory and Multiple Solution Problem, Birkhäuser, Boston, 1993.

C.C. Chen and C.S. Lin, Uniqueness of the ground state solutions of ∆u + f (u) = 0 in Rn , n ≥ 3, Comm. Partial Differential Equations 16 (1991), 1549–1572.

M. Clapp and A. Szulkin, Non-variational weakly coupled elliptic systems, Anal. Math. Phys. 12 (2022), no. 2, paper no. 57, 19 pp.

L. Damascelli and F. Pacella, Morse Index of Solutions of Nonlinear Elliptic Equations, Series in Nonlinear Analysis and Applications, vol. 30, de Gruyter, Berlin, Boston, 2019.

E.N. Dancer, J. Wei and T. Weth, A priori bounds versus multiple existence of positive solutions for a nonlinear Schrödinger system, Ann. Inst. H. Poincaré Anal. Non Linéaire 27 (2010), 953–969.

D.G. de Figueiredo and J.F. Yang, A priori bounds for positive solutions of a nonvariational elliptic system, Comm. Partial Differential Equations 26 (2001), 2305–2321.

G. Dinca and J. Mawhin, Brouwer Degree. The Core of Nonlinear Analysis, Birkhäuser, 2021.

B. Gidas and J. Spruck, A priori bounds for positive solutions of nonlinear elliptic equations, Comm. Partial Differential Equations 6 (1981), 883–901.

N. Ikoma, Compactness of minimizing sequences in nonlinear Schrödinger systems under multiconstraint conditions, Adv. Nonlinear Stud. 14 (2014), no. 1, 115–136.

L. Jeanjean, Existence of solutions with prescribed norm for semilinear elliptic equations, Nonlinear Anal. 28 (1997), no. 10, 1633–1659.

L. Jeanjean and S.S. Lu, A mass supercritical problem revisited, Calc. Var. Partial Differential Eequations 59 (2020), no. 174, 43 pp.

M.K. Kwong, Uniqueness of positive solutions of ∆u−u+up in Rn , Arch. Ration. Mech. Anal. 105 (1989), 243–266.

H. Li and W. Zou, Normalized ground states for semilinear elliptic systems with critical and subcritical nonlinearities, J. Fixed Point Theory Appl. 23 (2021), no. 3, paper no. 43, 30 pp.

J. Mederski and J. Schino, Least energy solutions to a cooperative system of Schrödinger equations with prescribed L2 -bounds: at least L2 -critical growth, Calc. Var. Partial Differential Equations 61 (2022), no. 1, paper no. 10, 31 pp.

E. Mitidieri and S. Pohozaev, Towards a unified approach to nonexistence of solutions for a class of differential inequalities, Milan J. Math. 72 (2004), 129–162.

W.M. Ni and I. Takagi, Locating the peaks of least-energy solutions to a semilinear Neumann problem, Duke Math. J. 70 (1983), 247–281.

B. Noris, H. Tavares and G. Verzini, Normalized solutions for nonlinear Schrödinger systems on bounded domains, Nonlinearity 32 (2019), no. 3, 1044–1072.

M. Reed and B. Simon, Methods of Modern Mathematical Physics, Vol. IV, Analysis of Operators, Academic Press, San Diego, 1978.

W.A. Strauss, Existence of solitary waves in higher dimensions, Comm. Math. Phys. 55 (1977), 149–162.

M. Willem, Minimax Theorems, Birkhäuser, Boston, 1996.

Downloads

  • PREVIEW
  • FULL TEXT

Published

2023-03-04

How to Cite

1.
CLAPP, Mónica and SZULKIN, Andrzej. Normalized solutions to a non-variational Schrödinger system. Topological Methods in Nonlinear Analysis. Online. 4 March 2023. Vol. 61, no. 1, pp. 445 - 464. [Accessed 17 May 2025]. DOI 10.12775/TMNA.2022.040.
  • ISO 690
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

Vol 61, No 1 (March 2023)

Section

Articles

License

Copyright (c) 2023 Mónica Clapp, Andrzej Szulkin

Creative Commons License

This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.

Stats

Number of views and downloads: 0
Number of citations: 0

Search

Search

Browse

  • Browse Author Index
  • Issue archive

User

User

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo

Newsletter

Subscribe Unsubscribe
Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop